International Journal of Theoretical Physics

, Volume 52, Issue 7, pp 2187–2195 | Cite as

Vector Models in \(\mathcal{PT}\) Quantum Mechanics

  • Katherine Jones-Smith
  • Rudolph Kalveks


We present two examples of non-Hermitian Hamiltonians which consist of an unperturbed part plus a perturbation that behaves like a vector, in the framework of \(\mathcal {PT}\) quantum mechanics. The first example is a generalization of the recent work by Bender and Kalveks, wherein the E2 algebra was examined; here we consider the E3 algebra representing a particle on a sphere, and identify the critical value of coupling constant which marks the transition from real to imaginary eigenvalues. Next we analyze a model with SO(3) symmetry, and in the process extend the application of the Wigner-Eckart theorem to a non-Hermitian setting.


Non-Hermitian quantum mechanics PT quantum mechanics Wigner-Eckhart theorem 



The authors would like to thank Harsh Mathur and Carl Bender for useful conversations.


  1. 1.
    Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998) MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Bender, C.M., Boettcher, S., Meisinger, P.: PT symmetric quantum mechanics. J. Math. Phys. 40, 2201–2229 (1999) MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2007) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of \(\mathcal{P}\mathcal{T}\)-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    Ruter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 1515 (2010) CrossRefGoogle Scholar
  6. 6.
    Zhao, K.F., Schaden, M., Wu, Z.: Enhanced magnetic resonance signal of spin-polarized Rb atoms near surfaces of coated cells. Phys. Rev. A 81, 042903 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    Bender, C., Kalveks, R.: \(\mathcal{PT}\) symmetry from Heisenberg algebra to E2 algebra. Int. J. Theor. Phys. 50, 955–962 (2011) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Coleman, S., Jackiw, R., Politzer, H.D.: Phys. Rev. D 10, 2491 (1974) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Physics DepartmentWashington University in Saint LouisSaint LouisUSA
  2. 2.Theoretical PhysicsImperial College LondonLondonUK

Personalised recommendations