Skip to main content
Log in

Formal Features of a General Theoretical Framework for Decoherence in Open and Closed Systems

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Two complementary decoherence formalisms, Environment Induced Decoherence (EID) for open systems and Self Induced Decoherence (SID) for close systems are compared under a common General Theoretical Formalism for Decoherence (GTFD). The differences and similarities of EID and SID are studied, e.g. that the main difference is that EID only considers the relevant information of the proper system S and neglects the rest, while SID considers all possible information available from a certain class of measurement instruments and neglects the non-available information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See the mathematical definition in Eq. (35).

  2. If we were working in a finite dimensional space \(\mathcal{O}\), we could choose α=(i,j), β=(k,l), \(\vert O_{R}^{\alpha} ) =\vert i \rangle \langle j\vert \), (ρ β|=|k〉〈l| so \(( \rho^{\beta}|O_{R}^{\alpha} ) =\mathrm{Tr} ( \vert i \rangle \langle j|k \rangle \langle l\vert ) =\delta_{jk}\delta_{il}\).

  3. In fact, decoherence is one of the steps of the classical limit for macroscopic systems.

  4. Following the laws of the thermodynamic, the total energy is conserved, but the mechanical energy is “degraded” in heat.

  5. The non-rigorous δ(ωω′) will soon disappear from this text. In fact the formalism below is precisely a way to eliminate this δ(ωω′). We will use this heuristic object “δ(ωω′)” just to give some examples below.

  6. See [43] Sect. 8.2 (p. 210) for the definition of these observables.

  7. More precisely \(\varPhi\subset\mathcal{H}\subset \varPhi^{\times}\), and F:Φ→ℂ in the complex case, where Φ × is the anti-dual space (see [48]).

  8. In each example of EID this preferred basis is defined unambiguously, a general definition can be found in [2].

  9. See the discussion about t DS in paper [2].

References

  1. Castagnino, M., et al.: Class. Quantum Gravity 25, 154002 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  2. Castagnino, M., Fortin, S.: Mod. Phys. Lett. A 26, 2365 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  3. Omnés, R.: Phys. Rev. A 65, 052119 (2002)

    Article  ADS  Google Scholar 

  4. Omnés, R.: Decoherence: an irreversible process (2001). arXiv:quant-ph/0106006v1

  5. Lombardi, O., Fortin, S., Castagnino, M.: The problem of identifying the system and the environment in the phenomenon of decoherence. In: de Regt, H.W., Hartmann, S., Okasha, S. (eds.) Philosophical Issues in the Sciences, vol. 3, pp. 161–174. Springer, Berlin (2012)

    Google Scholar 

  6. Castagnino, M., Laura, R.: Phys. Rev. A 56, 108–119 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  7. Laura, R., Castagnino, M.: Phys. Rev. A 57, 4140–4152 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  8. Laura, R., Castagnino, M.: Phys. Rev. E 57, 3948–3961 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  9. Castagnino, M.: Int. J. Theor. Phys. 38, 1333–1348 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Castagnino, M., Laura, R.: Phys. Rev. A 62, 022107 (2000)

    Article  ADS  Google Scholar 

  11. Castagnino, M., Laura, R.: Int. J. Theor. Phys. 39, 1737–1765 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Castagnino, M., Lombardi, O.: Int. J. Theor. Phys. 42, 1281–1299 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Castagnino, M.: Physica A 335, 511 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  14. Castagnino, M., Ordoñez, A.: Int. J. Theor. Phys. 43, 695–719 (2004)

    Article  MATH  Google Scholar 

  15. Castagnino, M., Gadella, M.: Found. Phys. 36, 920–952 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. van Hove, L.: Physica 23, 441 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. van Hove, L.: Physica 25, 268 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Castagnino, M., Fortin, S.: Int. J. Theor. Phys. 50, 2259–2267 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Paz, J.P., Zurek, W.H.: Environment-induced decoherence and the transition from quantum to classical. In: Heiss, D. (ed.) Lecture Notes in Physics, vol. 587. Springer, Heidelberg (2002)

    Google Scholar 

  20. Zurek, W.H.: Preferred sets of states, predictability, classicality and environment-induced decoherence. In: Halliwell, J.J., Pérez-Mercader, J., Zurek, W.H. (eds.) Physical Origins of Time Asymmetry, vol. 26, pp. 1862–1880. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  21. Zurek, W.H.: Phys. Rev. D 26, 1862–1880 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  22. Zurek, W.H.: Prog. Theor. Phys. 89, 281 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  23. Zurek, W.H.: Rev. Mod. Phys. 75, 715 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Zurek, W.H.: Preferred sets of states, predictability, classicality and environment-induced decoherence. In: Halliwell, J.J., Pérez-Mercader, J., Zurek, W.H. (eds.) Physical Origins of Time Asymmetry. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  25. Zurek, W.H.: Decoherence, einselection, and the existential interpretation (1998). arXiv:quant-ph/9805065

  26. Knill, E., Laflamme, R., Barnum, H., Dalvit, D., Dziarmaga, J., Gubernatis, J., Gurvits, L., Ortiz, G., Viola, L., Zurek, W.H.: Los Alamos Sci. 27, 2 (2002)

    Google Scholar 

  27. Castagnino, M., Lombardi, O.: Stud. Hist. Philos. Mod. Phys. 35, 73 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mackey, M.C.: Rev. Mod. Phys. 61, 981–1015 (1989)

    Article  ADS  Google Scholar 

  29. Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin (2007)

    Google Scholar 

  30. Antoniou, I., Suchanecki, Z., Laura, R., Tasaki, S.Z.: Physica A 241, 737–772 (1997)

    Article  ADS  Google Scholar 

  31. Castagnino, M., Gailoli, F., Gunzig, E.: Found. Cosmic Phys. 16, 221–375 (1996)

    ADS  Google Scholar 

  32. Nakajima, S.: Prog. Theor. Phys. 20, 948–959 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Zwanzig, R.: J. Chem. Phys. 33, 1338 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  34. Castagnino, M., Fortin, S.: J. Phys. A, Math. Theor. 45, 444009 (2012)

    Article  MathSciNet  Google Scholar 

  35. Castagnino, M., Fortin, S.: On a possible definition of the moving preferred basis. arXiv:1009.0535v2 (2010)

  36. Zeh, H.D.: The Physical Basis of the Direction of Time. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  37. Bleistein, N., Handelsman, R.: Asymptotic Expansion of Integrals. Dover, New York (1986)

    Google Scholar 

  38. Casati, G., Prosen, T.: Phys. Rev. A 72, 032111 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  39. Castagnino, M.: Physica A 335, 511–517 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  40. Castagnino, M., Ordoñez, A.: Int. J. Theor. Phys. 43, 695–719 (2005)

    Article  Google Scholar 

  41. Halvorson, H.: Algebraic quantum field theory. In: Butter, J., Earman, J. (eds.) Handbook of the Philosophy of Science: Philosophy of Physics, Part A. Elsevier, Amsterdam (2007). eprint: arXiv:math-ph/0602036v1

    Google Scholar 

  42. Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics I. Springer, Berlin (1979)

    Book  Google Scholar 

  43. Ballentine, L.E.: Quantum Mechanics. Prentice Hall, New York (1990)

    Google Scholar 

  44. Trèves, A.: Topological Vector Space, Distribution and Kernels. Academic Press, New York (1967)

    Google Scholar 

  45. Iguri, S.M., Castagnino, M.A.: J. Math. Phys. 49, 033510 (2008)

    Article  MathSciNet  Google Scholar 

  46. Castagnino, M., Ordóñez, A.: Algebraic formulation of quantum decoherence. Int. J. Math. Phys. 43, 695–719 (2004)

    Article  MATH  Google Scholar 

  47. Castagnino, M., Lombardi, O.: Stud. Hist. Philos. Sci. 35, 73–107 (2004)

    MathSciNet  MATH  Google Scholar 

  48. Bohm, A.: Quantum Mechanics, Foundations and Applications. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  49. Castagnino, M., Laura, R.: Phys. Rev. A 62, 022107 (2000)

    Article  ADS  Google Scholar 

  50. Castagnino, M., Fortin, S.: Defining the moving preferred basis in closed systems (2012, in preparation)

  51. Castagnino, M., Lombardi, O.: Phys. Rev. A 72, 012102 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  52. Castagnino, M., Laura, R.: Int. J. Theor. Phys. 39, 1737–1765 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. Gambini, R., Pulin, J.: Found. Phys. 37, 7 (2007)

    Article  Google Scholar 

  54. Gambini, R., Porto, R.A., Pulin, J.: Gen. Relativ. Gravit. 39, 8 (2007)

    Article  Google Scholar 

  55. Gambini, R., Pulin, J.: Modern space-time and undecidability. In: Petkov, V. (ed.) Fundamental Theories of Physics (Minkowski Spacetime: A Hundred Years Later), vol. 165. Springer, Heidelberg (2010)

    Google Scholar 

  56. Castagnino, M., Lombardi, O.: Physica A 388, 247–267 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  57. Lombardi, O., Castagnino, M.: Stud. Hist. Philos. Sci. 39, 380–443 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. Castagnino, M., Lombardi, O.: J. Phys. Conf. Ser. 128, 012014 (2008)

    Article  ADS  Google Scholar 

  59. Rothe, C., Hintschich, S.I., Monkman, A.P.: Phys. Rev. Lett. 96, 163601 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Fortin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castagnino, M., Fortin, S. Formal Features of a General Theoretical Framework for Decoherence in Open and Closed Systems. Int J Theor Phys 52, 1379–1398 (2013). https://doi.org/10.1007/s10773-012-1456-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1456-4

Keywords

Navigation