International Journal of Theoretical Physics

, Volume 52, Issue 4, pp 1221–1239 | Cite as

Quantum Mechanical Virial Theorem in Systems with Translational and Rotational Symmetry



Generalized virial theorem for quantum mechanical nonrelativistic and relativistic systems with translational and rotational symmetry is derived in the form of the commutator between the generator of dilations G and the Hamiltonian H. If the conditions of translational and rotational symmetry together with the additional conditions of the theorem are satisfied, the matrix elements of the commutator [G,H] are equal to zero on the subspace of the Hilbert space. Normalized simultaneous eigenvectors of the particular set of commuting operators which contains H, J 2, J z and additional operators form an orthonormal basis in this subspace. It is expected that the theorem is relevant for a large number of quantum mechanical N-particle systems with translational and rotational symmetry.


Quantum mechanics Virial theorem Systems with translational and rotational symmetry Dilations 


  1. 1.
    Lucha, W.: Relativistic virial theorems. Mod. Phys. Lett. A 5, 2473–2483 (1990) ADSCrossRefGoogle Scholar
  2. 2.
    Ehrenfest, P.: Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. Phys. 45, 455–457 (1927) ADSMATHCrossRefGoogle Scholar
  3. 3.
    Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, Reading (1980) MATHGoogle Scholar
  4. 4.
    Schiff, L.I.: Quantum Mechanics, 3rd edn. McGraw-Hill, New York (1968) Google Scholar
  5. 5.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vols. 1, 2, 4. Academic Press, New York (1975–1980) Google Scholar
  6. 6.
    Georgescu, V., Gérard, C.: On the virial theorem in quantum mechanics. Commun. Math. Phys. 208, 275–281 (1999) ADSMATHCrossRefGoogle Scholar
  7. 7.
    Fock, V.: Bemerkung zum Virialsatz. Z. Phys. 63, 855–858 (1930) ADSMATHCrossRefGoogle Scholar
  8. 8.
    Brack, M.: Virial theorems for relativistic spin-\(\frac{1}{2}\) and spin-0 particles. Phys. Rev. D 27, 1950–1953 (1983) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Hazewinkel, M.: Encyclopaedia of Mathematics. Springer, Berlin (2002). Google Scholar
  10. 10.
    Szekeres, P.: A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry. Cambridge University Press, Cambridge (2004) MATHCrossRefGoogle Scholar
  11. 11.
    Butkov, E.: Mathematical Physics. Addison-Wesley, Reading (1968) MATHGoogle Scholar
  12. 12.
    Lucha, W., Schöberl, F.F.: Relativistic virial theorem. Phys. Rev. Lett. 64, 2733–2735 (1990) MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Toyoda, T.: Canonical generator of conformal transformations in nonrelativistic quantum many-body systems at finite temperatures. Phys. Rev. A 48, 3492–3498 (1993) ADSCrossRefGoogle Scholar
  14. 14.
    Toyoda, T., Takiuchi, K.: Quantum field theoretical reformulation of the virial theorem. Physica A 261, 471–481 (1998) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Takiuchi, K., Toyoda, T.: Gauge invariance and the virial theorem for the quantized Schrödinger field. Phys. Lett. A 262, 40–43 (1999) MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Dudas, E.A., Pirjol, D.: A virial theorem in quantum field theory. Phys. Lett. B 260, 186–192 (1991) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity of SplitSplitCroatia

Personalised recommendations