International Journal of Theoretical Physics

, Volume 52, Issue 6, pp 2008–2016 | Cite as

A New Secure Quantum Key Expansion Scheme



A new quantum key expansion scheme is proposed. The protocol of quantum key expansion proposed by Hwang is analyzed and the eavesdropping scheme is presented. We found that the using of the basis sequence shared by communicating parties is the weakness of the protocol. Hence we propose a ‘purification attack’ for the eavesdropper to steal partial information of the raw key and the new key between communicating parties. In view of this defect, we propose a new protocol of quantum key expansion, where the shared key is encrypted into a sequence of unitary operators which can be used securely against the presented attack.


Quantum key expansion Quantum key distribution Quantum cryptography Unitary operators 



This research was supported by Research Project of Education Department of Heilongjiang Province (12511107).


  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York (1984) Google Scholar
  2. 2.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992) MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991) MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Lutkenhaus, N.: Security against eavesdropping in quantum cryptography. Phys. Rev. A 54, 97–112 (1996) ADSCrossRefGoogle Scholar
  5. 5.
    Bruss, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018 (1998) ADSCrossRefGoogle Scholar
  6. 6.
    Bechmann-Pasquinucci, H., Peres, A.: Quantum cryptography with 3-state systems. Phys. Rev. Lett. 85, 3313 (2000) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    Zhao, Y., Qi, B., Lo, H.K.: Quantum key distribution with an unknown and untrusted source. Phys. Rev. A 77, 052327 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Quantum key distribution protocols with six-photon states against collective noise. Opt. Commun. 282, 4171 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    Sun, S.H., Liang, L.M., Li, C.Z.: Decoy state quantum key distribution with finite resources. Phys. Lett. A 373, 2533 (2009) ADSMATHCrossRefGoogle Scholar
  11. 11.
    Sheridan, L., Le, T.P., Scarani, V.: Finite-key security against coherent attacks in quantum key distribution. New J. Phys. 12, 123019 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    Hughes, R.J., Nordholt, J.E., Derkacs, D., et al.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4, 43 (2002) ADSMATHCrossRefGoogle Scholar
  14. 14.
    Scheidl, T., Ursin, R., Fedrizzi, A., Ramelow, S., et al.: Feasibility of 300 km quantum key distribution with entangled states. New J. Phys. 11, 085002 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    Rosenberg, D., Peterson, C.G., Harrington, J.W., et al.: Practical long-distance quantum key distribution system using decoy levels. New J. Phys. 11, 045009 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    Dixon, A.R., Yuan, Z.L., Dynes, J.F., et al.: Continuous operation of high bit rate quantum key distribution. Appl. Phys. Lett. 96, 161102 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distance. Science 283, 2050 (1999) ADSCrossRefGoogle Scholar
  18. 18.
    Mayers, D.: Quantum key distribution and string oblivious transfer in noisy channels. In: Adv. in Cryptology-Proceedings of Crypto’96, p. 343. Springer, New York (1996) Google Scholar
  19. 19.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution prorotol. Phys. Rev. Lett. 85, 441 (2000) ADSCrossRefGoogle Scholar
  20. 20.
    Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000) ADSCrossRefGoogle Scholar
  21. 21.
    Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000) ADSCrossRefGoogle Scholar
  22. 22.
    Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003) ADSCrossRefGoogle Scholar
  23. 23.
    Hwang, W.Y., Koh, I.G., Han, Y.D.: Quantum cryptography without public announcement of bases. Phys. Lett. A 244, 489 (1998) ADSMATHCrossRefGoogle Scholar
  24. 24.
    Ji, S.W., Lee, H.W., Long, G.L.: Secure quantum key expansion between two parties sharing a key. J. Korean Phys. Soc. 51, 1245 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    Hwang, W.Y., Wang, X.B., Matsumoto, K., Kim, J., Lee, H.W.: Shor-Preskill-type security proof for quantum key distribution without public announcement of bases. Phys. Rev. A 67, 012302 (2003) ADSCrossRefGoogle Scholar
  26. 26.
    Hwang, W.Y., Ahn, D., Hwang, S.W.: Eavesdropper’s optimal information in variations of Bennett–Brassard 1984 quantum key distribution in the coherent attacks. Phys. Lett. A 279, 133 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Wen, K., Long, G.L.: Modified Bennett-Brassard 1984 quantum key distribution protocol with two-way classical communications. Phys. Rev. A 72, 022336 (2005) ADSMATHCrossRefGoogle Scholar
  28. 28.
    Lin, S., Liu, X.F.: A modified quantum key distribution without public announcement bases against photon-number-splitting attack. Int. J. Theor. Phys. 51, 2514 (2012) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of MathematicsHarbin Engineering UniversityHarbinChina
  2. 2.Department of MathematicsHarbin University of Science and TechnologyHarbinChina
  3. 3.Department of Computer Science and TechnologyHarbin Engineering UniversityHarbinChina

Personalised recommendations