International Journal of Theoretical Physics

, Volume 52, Issue 3, pp 1007–1012 | Cite as

Topology, Holes and Sources

  • Alexander AfriatEmail author


The Aharonov-Bohm effect is often called “topological.” But it seems no more topological than magnetostatics, electrostatics or Newton-Poisson gravity (or just about any radiation, propagation from a source). I distinguish between two senses of “topological.”


Aharonov-Bohm effect Topology Electromagnetism Quantum mechanics 



I thank Nazim Bouatta, Dennis Dieks, Éric Gourgoulhon, Marc Lachièze-Rey and Jean-Philippe Nicolas for valuable clarifications and corrections.


  1. 1.
    Agricola, I., Friedrich, T.: Vektoranalysis: Differentialformen in Analysis, Geometrie und Physik. Vieweg+Teubner, Berlin (2010) zbMATHCrossRefGoogle Scholar
  2. 2.
    Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959) MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Batterman, R.W.: Falling cats, parallel parking and polarized light. Stud. Hist. Philos. Mod. Phys. 34, 527–557 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ehrenberg, W., Siday, R.E.: The refractive index in electron optics and the principles of dynamics. Proc. Phys. Soc. B 62, 8–21 (1949) ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Lyre, H.: The principles of gauging. Philos. Sci. 68, S371–S381 (2001) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lyre, H.: Holism and structuralism in U(1) gauge theory. Stud. Hist. Philos. Mod. Phys. 35, 643–670 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Martin, C.: On continuous symmetries and the foundations of modern physics. In: Brading, K., Castellani, E. (eds.) Symmetries in Physics, pp. 29–60. Cambridge University Press, Cambridge (2003) CrossRefGoogle Scholar
  8. 8.
    Nash, C., Sen, S.: Topology and Geometry for Physicists. Academic Press, London (1983) zbMATHGoogle Scholar
  9. 9.
    Nounou, A.: A fourth way to the Aharonov-Bohm effect. In: Brading, K., Castellani, E. (eds.) Symmetries in Physics, pp. 174–199. Cambridge University Press, Cambridge (2003) CrossRefGoogle Scholar
  10. 10.
    Ryder, L.: Quantum Field Theory. Cambridge University Press, Cambridge (1996) zbMATHGoogle Scholar
  11. 11.
    Wu, T.T., Yang, C.N.: Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D 12, 3845–3857 (1975) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Université de Bretagne OccidentaleBrestFrance

Personalised recommendations