Advertisement

International Journal of Theoretical Physics

, Volume 52, Issue 3, pp 706–715 | Cite as

Entanglement in a Tripartite Cavity-Optomechanical System

  • Ni Liu
  • Junqi Li
  • J.-Q. Liang
Article

Abstract

We propose a scheme to prepare entangled-states in the tripartite optomechanical-system consisting of a two-level atom in a high-finesse optical cavity with a oscillating mirror at one end. In particular, a Greenberger-Horne-Zeilinger like state can be generated. It is shown that the spontaneous emission rate γ of the atom, mean photon-number n and the coupling strength k play an important role in entanglement generation. Moreover the interesting phenomena of entanglement sudden-death (ESD) and sudden-birth (ESB) can be displayed in the system considered.

Keywords

Cavity optomechanical system Movable mirror Negativity Master equation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China Grant Nos.11075099, 11047167 and 11105087 and the Youth Science Foundation of Shanxi Province of China under grant number 2010021003-2.

References

  1. 1.
    Gröblacher, S., Hammerer, K., Vanner, M.R., Aspelmeyer, M.: Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature (London) 460, 724 (2009) CrossRefADSGoogle Scholar
  2. 2.
    Wilson-Rae, I., Nooshi, N., Zwerger, W., Kippenberg, T.J.: Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007) CrossRefADSGoogle Scholar
  3. 3.
    Genes, C., Vitali, D., Tombesi, P., Gigan, S., Aspelmeyer, M.: Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008) CrossRefADSGoogle Scholar
  4. 4.
    Agarwal, G.S., Huang, S.M.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010) CrossRefADSGoogle Scholar
  5. 5.
    Chen, B., Jiang, C., Zhu, K.D.: Slow light in a cavity optomechanical system with a Bose-Einstein condensate. Phys. Rev. A 83, 055803 (2011) CrossRefADSGoogle Scholar
  6. 6.
    Ian, H., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Cavity optomechanical coupling assisted by an atomic gas. Phys. Rev. A 78, 013824 (2008) CrossRefADSGoogle Scholar
  7. 7.
    Thompson, J.D., Zwickl, B.M., Jayich, A.M., Marquardt, F., Girvin, S.M., Harris, J.G.E.: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature (London) 452, 72 (2008) CrossRefADSGoogle Scholar
  8. 8.
    Corbitt, T., Chen, Y.B., Innerhofer, E., Müller-Ebhardt, H., Ottaway, D., Rehbein, H., Sigg, D., Whitcomb, S., Wipf, C., Mavalvala, N.: An all-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802 (2007) CrossRefADSGoogle Scholar
  9. 9.
    Gigan, S., Böhm H, R., Paternostro, M., Blaser, F., Langer, G., Hertzberg, J.B., Schwab, K.C., Bäuerle, D., Aspelmeyer, M., Zeilinger, A.: Self-cooling of a micromirror by radiation pressure. Nature 444, 67 (2006) CrossRefADSGoogle Scholar
  10. 10.
    Arcizet, O., Cohadon, P.F., Briant, T., Pinard, M., Heidmann, A.: Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71 (2006) CrossRefADSGoogle Scholar
  11. 11.
    Schliesser, A., Del’Haye, P., Nooshi, N., Vahala, K.J., Kippenberg, T.J.: Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006) CrossRefADSGoogle Scholar
  12. 12.
    Brennecke, F., Ritter, S., Donner, T., Esslinger, T.: Cavity optomechanics with a Bose-Einstein condensate. Science 322, 235 (2008) CrossRefADSGoogle Scholar
  13. 13.
    Hunger, D., Camerer, S., Korppi, M., Jöckel, A., Hänsch, T.W., Treutlein, P.: Coupling ultracold atoms to mechanical oscillators. C. R. Phys. 12, 871 (2011) CrossRefADSGoogle Scholar
  14. 14.
    Fortágh, J., Zimmermann, C.: Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235 (2007) CrossRefADSGoogle Scholar
  15. 15.
    Schwab, K.C., Roukes, M.L.: Putting mechanics into quantum mechanics. Phys. Today 58, 36 (2005) CrossRefGoogle Scholar
  16. 16.
    Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321, 1172 (2008) CrossRefADSGoogle Scholar
  17. 17.
    Genes, C., Vitali, D., Tombesi, P.: Emergence of atom-light-mirror entanglement inside an optical cavity. Phys. Rev. A 77, 050307(R) (2008) ADSGoogle Scholar
  18. 18.
    Hammerer, K., Aspelmeyer, M., Polzik, E.S., Zoller, P.: Establishing Einstein-Poldosky-Rosen channels between nanomechanics and atomic ensembles. Phys. Rev. Lett. 102, 020501 (2009) CrossRefADSGoogle Scholar
  19. 19.
    Genes, C., Ritsch, H., Vitali, D.: Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption. Phys. Rev. A 80, 061803(R) (2009) CrossRefADSGoogle Scholar
  20. 20.
    Chang, Y., Shi, T., Liu, Y.X., Sun, C.P., Nori, F.: Multistability of electromagnetically induced transparency in atom-assisted optomechanical cavities. Phys. Rev. A 83, 063826 (2011) CrossRefADSGoogle Scholar
  21. 21.
    Santos, J.P., Semião, F.L., Furuya, K.: Probing the quantum phase transition in the Dicke model through mechanical vibrations. Phys. Rev. A 82, 063801 (2010) CrossRefADSGoogle Scholar
  22. 22.
    Wang, Y.M., Liu, B., Lian, J.L., Liang, J.Q.: A scheme for detecting the atom-field coupling constant in the Dicke superradiation regime using hybrid cavity optomechanical system. Opt. Express 20, 10107 (2012) Google Scholar
  23. 23.
    James, D.F.V., Jerke, J.: Effective Hamiltonian theory and its applications in quantum information (2007). arXiv:0706.1090
  24. 24.
    Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004) CrossRefADSGoogle Scholar
  25. 25.
    Almeida, M.P., de Melo, F., Hor-Meyll, M., Salles, A., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Environment-Induced sudden death of entanglement. Science 316, 579 (2007) CrossRefADSGoogle Scholar
  26. 26.
    Laurat, J., Choi, K.S., Deng, H., Chou, C.W., Kimble, H.J.: Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling. Phys. Rev. Lett. 99, 180504 (2007) CrossRefADSGoogle Scholar
  27. 27.
    Salles, A., de Melo, F., Almeida, M.P., Hor-Meyll, M., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Experimental investigation of the dynamics of entanglement: sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78, 022322 (2008) CrossRefADSGoogle Scholar
  28. 28.
    Vitali, D., Gigan, S., Ferreira, A., Böhm, H.R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007) CrossRefADSGoogle Scholar
  29. 29.
    Hood, C.J., Chapman, M.S., Lynn, T.W., Kimble, H.J.: Real-time cavity QED with single atoms. Phys. Rev. Lett. 80, 4157 (1998) CrossRefADSGoogle Scholar
  30. 30.
    Bose, S., Jacobs, K., Knight, P.L.: Scheme to probe the decoherence of a macroscopic object. Phys. Rev. A 59, 3204 (1999) CrossRefADSGoogle Scholar
  31. 31.
    Hasegawa, Y., Loidl, R., Badurek, G., Durstberger-Rennhofer, K., Sponar, S., Rauch, H.: Engineering of triply entangled states in a single-neutron system. Phys. Rev. A 81, 032121 (2010) CrossRefADSGoogle Scholar
  32. 32.
    Liu, W., Wang, Y.B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. (2012). doi: 10.1007/s10773-012-1246-z Google Scholar
  33. 33.
    Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002) CrossRefADSGoogle Scholar
  34. 34.
    Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006) CrossRefADSGoogle Scholar
  35. 35.
    Li, J.Q., Fu, L.B., Liang, J.Q.: Environment-induced disentanglement of the Einstein-Podolsky-Rosen system. J. Phys. B, At. Mol. Opt. Phys. 41, 015504 (2008) CrossRefADSGoogle Scholar
  36. 36.
    Liu, Y.X., Miranowicz, A., Gao, Y.B., Bajer, J., Sun, C.P., Nori, F.: Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators. Phys. Rev. A 82, 032101 (2010) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Institute of Theoretical PhysicsShanxi UniversityTaiyuanChina

Personalised recommendations