Skip to main content
Log in

Entanglement in a Tripartite Cavity-Optomechanical System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a scheme to prepare entangled-states in the tripartite optomechanical-system consisting of a two-level atom in a high-finesse optical cavity with a oscillating mirror at one end. In particular, a Greenberger-Horne-Zeilinger like state can be generated. It is shown that the spontaneous emission rate γ of the atom, mean photon-number n and the coupling strength k play an important role in entanglement generation. Moreover the interesting phenomena of entanglement sudden-death (ESD) and sudden-birth (ESB) can be displayed in the system considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gröblacher, S., Hammerer, K., Vanner, M.R., Aspelmeyer, M.: Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature (London) 460, 724 (2009)

    Article  ADS  Google Scholar 

  2. Wilson-Rae, I., Nooshi, N., Zwerger, W., Kippenberg, T.J.: Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)

    Article  ADS  Google Scholar 

  3. Genes, C., Vitali, D., Tombesi, P., Gigan, S., Aspelmeyer, M.: Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008)

    Article  ADS  Google Scholar 

  4. Agarwal, G.S., Huang, S.M.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010)

    Article  ADS  Google Scholar 

  5. Chen, B., Jiang, C., Zhu, K.D.: Slow light in a cavity optomechanical system with a Bose-Einstein condensate. Phys. Rev. A 83, 055803 (2011)

    Article  ADS  Google Scholar 

  6. Ian, H., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Cavity optomechanical coupling assisted by an atomic gas. Phys. Rev. A 78, 013824 (2008)

    Article  ADS  Google Scholar 

  7. Thompson, J.D., Zwickl, B.M., Jayich, A.M., Marquardt, F., Girvin, S.M., Harris, J.G.E.: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature (London) 452, 72 (2008)

    Article  ADS  Google Scholar 

  8. Corbitt, T., Chen, Y.B., Innerhofer, E., Müller-Ebhardt, H., Ottaway, D., Rehbein, H., Sigg, D., Whitcomb, S., Wipf, C., Mavalvala, N.: An all-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802 (2007)

    Article  ADS  Google Scholar 

  9. Gigan, S., Böhm H, R., Paternostro, M., Blaser, F., Langer, G., Hertzberg, J.B., Schwab, K.C., Bäuerle, D., Aspelmeyer, M., Zeilinger, A.: Self-cooling of a micromirror by radiation pressure. Nature 444, 67 (2006)

    Article  ADS  Google Scholar 

  10. Arcizet, O., Cohadon, P.F., Briant, T., Pinard, M., Heidmann, A.: Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71 (2006)

    Article  ADS  Google Scholar 

  11. Schliesser, A., Del’Haye, P., Nooshi, N., Vahala, K.J., Kippenberg, T.J.: Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006)

    Article  ADS  Google Scholar 

  12. Brennecke, F., Ritter, S., Donner, T., Esslinger, T.: Cavity optomechanics with a Bose-Einstein condensate. Science 322, 235 (2008)

    Article  ADS  Google Scholar 

  13. Hunger, D., Camerer, S., Korppi, M., Jöckel, A., Hänsch, T.W., Treutlein, P.: Coupling ultracold atoms to mechanical oscillators. C. R. Phys. 12, 871 (2011)

    Article  ADS  Google Scholar 

  14. Fortágh, J., Zimmermann, C.: Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235 (2007)

    Article  ADS  Google Scholar 

  15. Schwab, K.C., Roukes, M.L.: Putting mechanics into quantum mechanics. Phys. Today 58, 36 (2005)

    Article  Google Scholar 

  16. Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321, 1172 (2008)

    Article  ADS  Google Scholar 

  17. Genes, C., Vitali, D., Tombesi, P.: Emergence of atom-light-mirror entanglement inside an optical cavity. Phys. Rev. A 77, 050307(R) (2008)

    ADS  Google Scholar 

  18. Hammerer, K., Aspelmeyer, M., Polzik, E.S., Zoller, P.: Establishing Einstein-Poldosky-Rosen channels between nanomechanics and atomic ensembles. Phys. Rev. Lett. 102, 020501 (2009)

    Article  ADS  Google Scholar 

  19. Genes, C., Ritsch, H., Vitali, D.: Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption. Phys. Rev. A 80, 061803(R) (2009)

    Article  ADS  Google Scholar 

  20. Chang, Y., Shi, T., Liu, Y.X., Sun, C.P., Nori, F.: Multistability of electromagnetically induced transparency in atom-assisted optomechanical cavities. Phys. Rev. A 83, 063826 (2011)

    Article  ADS  Google Scholar 

  21. Santos, J.P., Semião, F.L., Furuya, K.: Probing the quantum phase transition in the Dicke model through mechanical vibrations. Phys. Rev. A 82, 063801 (2010)

    Article  ADS  Google Scholar 

  22. Wang, Y.M., Liu, B., Lian, J.L., Liang, J.Q.: A scheme for detecting the atom-field coupling constant in the Dicke superradiation regime using hybrid cavity optomechanical system. Opt. Express 20, 10107 (2012)

    Google Scholar 

  23. James, D.F.V., Jerke, J.: Effective Hamiltonian theory and its applications in quantum information (2007). arXiv:0706.1090

  24. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  25. Almeida, M.P., de Melo, F., Hor-Meyll, M., Salles, A., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Environment-Induced sudden death of entanglement. Science 316, 579 (2007)

    Article  ADS  Google Scholar 

  26. Laurat, J., Choi, K.S., Deng, H., Chou, C.W., Kimble, H.J.: Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling. Phys. Rev. Lett. 99, 180504 (2007)

    Article  ADS  Google Scholar 

  27. Salles, A., de Melo, F., Almeida, M.P., Hor-Meyll, M., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Experimental investigation of the dynamics of entanglement: sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78, 022322 (2008)

    Article  ADS  Google Scholar 

  28. Vitali, D., Gigan, S., Ferreira, A., Böhm, H.R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  29. Hood, C.J., Chapman, M.S., Lynn, T.W., Kimble, H.J.: Real-time cavity QED with single atoms. Phys. Rev. Lett. 80, 4157 (1998)

    Article  ADS  Google Scholar 

  30. Bose, S., Jacobs, K., Knight, P.L.: Scheme to probe the decoherence of a macroscopic object. Phys. Rev. A 59, 3204 (1999)

    Article  ADS  Google Scholar 

  31. Hasegawa, Y., Loidl, R., Badurek, G., Durstberger-Rennhofer, K., Sponar, S., Rauch, H.: Engineering of triply entangled states in a single-neutron system. Phys. Rev. A 81, 032121 (2010)

    Article  ADS  Google Scholar 

  32. Liu, W., Wang, Y.B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. (2012). doi:10.1007/s10773-012-1246-z

    Google Scholar 

  33. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  34. Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)

    Article  ADS  Google Scholar 

  35. Li, J.Q., Fu, L.B., Liang, J.Q.: Environment-induced disentanglement of the Einstein-Podolsky-Rosen system. J. Phys. B, At. Mol. Opt. Phys. 41, 015504 (2008)

    Article  ADS  Google Scholar 

  36. Liu, Y.X., Miranowicz, A., Gao, Y.B., Bajer, J., Sun, C.P., Nori, F.: Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators. Phys. Rev. A 82, 032101 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China Grant Nos.11075099, 11047167 and 11105087 and the Youth Science Foundation of Shanxi Province of China under grant number 2010021003-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ni Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, N., Li, J. & Liang, JQ. Entanglement in a Tripartite Cavity-Optomechanical System. Int J Theor Phys 52, 706–715 (2013). https://doi.org/10.1007/s10773-012-1379-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1379-0

Keywords

Navigation