Advertisement

International Journal of Theoretical Physics

, Volume 52, Issue 3, pp 699–705 | Cite as

Stronger Criteria for Nonseparability in n-Partite Quantum States

  • Yao Lu
  • Gui Lu Long
  • Ting Gao
Article

Abstract

We investigate the multipartite entanglement in arbitrary dimensional systems, and separability criteria for nonseparability in n-partite quantum states are derived. Examples such as the generalized noisy-W state and the GHZ basis states mixed with white noise are provided to show that our criteria are independent of and stronger than previously reported ones. Our criteria can also be expressed by the elements of the density matrix, which allows a simple and practical evaluation and computation. The experimental implementation of our criteria is also discussed.

Keywords

Separability criteria Multipartite entanglement Density matrix element 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11175094, 10971247), the National Basic Research Program of China (2009CB929402, 2011CB9216002), and the SRFDP (Grant No. 20110002110007), Hebei Natural Science Foundation of China ( Grant No. A2012205013).

References

  1. 1.
    Horodecki, R., et al.: Rev. Mod. Phys. 81, 865 (2009) MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H., DiVincenzo, D.P.: Nature 404, 247 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    Raussendorf, R., Briegel, H.J.: Phys. Rev. Lett. 86, 5188 (2001) ADSCrossRefGoogle Scholar
  4. 4.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993) MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Gühne, O., Lu, C.-Y., Gao, W.-B., Pan, J.-W.: Phys. Rev. A 76, 030305(R) (2007) CrossRefGoogle Scholar
  6. 6.
    Gühne, O., Seevinck, M.: New J. Phys. 12, 053002 (2010) CrossRefGoogle Scholar
  7. 7.
    Huber, M., Mintert, F., Gabriel, A., Hiesmayr, B.C.: Phys. Rev. Lett. 104, 210501 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    Gabriel, A., Hiesmayr, B.C., Huber, M.: Quantum Inf. Comput. 10, 829 (2010) MathSciNetMATHGoogle Scholar
  9. 9.
    Gao, T., Hong, Y.: Phys. Rev. A 82, 062113 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    Gao, T., Hong, Y.: Eur. Phys. J. D 61, 765 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    Szalay, S.: Phys. Rev. A 83, 062337 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    Huber, M., Schimpf, H., Gabriel, A., Spengler, C., Bruss, D., Hiesmayr, B.C.: Phys. Rev. A 83, 022328 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    Gühne, O.: Phys. Lett. A 375, 406 (2011) MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Low-dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijingP.R. China
  2. 2.Tsinghua National Laboratory for Information Science and TechnologyBeijingP.R. China
  3. 3.College of Mathematics and Information ScienceHebei Normal UniversityShijiazhuangP.R. China

Personalised recommendations