Advertisement

International Journal of Theoretical Physics

, Volume 52, Issue 6, pp 1964–1969 | Cite as

Construction of Positive-Operator Valued Measures via Wavefunctions of Physical Systems

  • Xue-Hong Wang
  • Yan Li
  • Hong-Yi Su
  • Jun-Yi Guo
Article
  • 123 Downloads

Abstract

To facilitate state discrimination, we present a general approach to construct Positive-Operator Valued Measures consisting of infinite elements specified by continuous variables in wavefunctions of arbitrary solvable Hamiltonian.

Keywords

Positive-operator valued measure Wavefunction Discrimination 

Notes

Acknowledgement

This work was supported in part by NSF of China (Grant No. 11171164).

References

  1. 1.
    Schiff, L.: Quantum Mechanics. McGraw-Hill, New York (1968) Google Scholar
  2. 2.
    Chefles, A.: Contemp. Phys. 41, 401 (2000) ADSCrossRefGoogle Scholar
  3. 3.
    Griffiths, D., Harris, E.: Introduction to Quantum Mechanics, vol. 2. Prentice Hall, New Jersey (1995) MATHGoogle Scholar
  4. 4.
    Ivanovic, I.D.: Phys. Lett. A 123, 257 (1987) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Dieks, D.: Phys. Lett. A 126, 303 (1988) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Peres, A.: Phys. Lett. A 128, 19 (1988) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Gleason, A.M.: Indiana Univ. Math. J. 6, 885 (1957) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Helstrom, C.: J. Stat. Phys. 1, 231 (1969) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Kennedy, R.S.: MIT Q. Prog. Rep. 110, 142 (1973) Google Scholar
  10. 10.
    Bennett, C., et al.: In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, vol. 175 (1984) Google Scholar
  11. 11.
    Barnett, S.: Philos. Trans. R. Soc. A 355, 2279 (1997) ADSCrossRefGoogle Scholar
  12. 12.
    Roa, L., Retamal, J., Saavedra, C.: Phys. Rev. A 66, 012103 (2002) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Bergou, J., Herzog, U., Hillery, M.: In: Quantum State Estimation, pp. 417–465. Springer, New York (2004) CrossRefGoogle Scholar
  14. 14.
    Chefles, A.: In: Quantum State Estimation, p. 467. Springer, New York (2004) CrossRefGoogle Scholar
  15. 15.
    Barnett, S.: Quantum Inf. Comput. 4, 450 (2004) MathSciNetMATHGoogle Scholar
  16. 16.
    Bergou, J.: J. Phys. Conf. Ser. 84, 012001 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    Barnett, S., Croke, S.: arXiv:0810.1970v1
  18. 18.
    Barnett, S.: J. Mod. Opt. 57, 232 (2010) ADSMATHCrossRefGoogle Scholar
  19. 19.
    Barnett, S., Riis, E.: J. Mod. Opt. 44, 1061 (1997) ADSGoogle Scholar
  20. 20.
    Sasaki, M., Hirota, O.: Phys. Rev. A 54, 2728 (1996) ADSCrossRefGoogle Scholar
  21. 21.
    Belavkin, V., Hirota, O., Hudson, R.: Quantum Communications and Measurement. Plenum, New York (1995) MATHGoogle Scholar
  22. 22.
    Ban, M., Osaki, M., Hirota, O.: J. Mod. Opt. 43, 2337 (1996) ADSCrossRefGoogle Scholar
  23. 23.
    Osaki, M., Ban, M., Hirota, O.: Phys. Rev. A 54, 1691 (1996) ADSCrossRefGoogle Scholar
  24. 24.
    Peres, A.: Found. Phys. 20, 1441 (1990) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Kraus, K.: States, Effects and Operations: Fundamental Notions of Quantum Theory. Springer, Berlin (1983) MATHCrossRefGoogle Scholar
  26. 26.
    Davies, E., Lewis, J.: Commun. Math. Phys. 17, 239 (1970) MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Wiseman, H.: Quantum Semiclassical Opt. 7, 569 (1995) ADSCrossRefGoogle Scholar
  28. 28.
    Jones, S., Wiseman, H., Doherty, A.: Phys. Rev. A 76, 052116 (2007) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.School of Mathematical SciencesNankai UniversityTianjinPeople’s Republic of China
  2. 2.Theoretical Physics Division, Chern Institute of MathematicsNankai UniversityTianjinPeople’s Republic of China

Personalised recommendations