Advertisement

International Journal of Theoretical Physics

, Volume 52, Issue 1, pp 105–116 | Cite as

Hyperbolic Octonion Formulation of Gravitational Field Equations

  • Süleyman Demir
Article

Abstract

In this paper, the Maxwell-Proca type field equations of linear gravity are formulated in terms of hyperbolic octonions (split octonions). A hyperbolic octonionic gravitational wave equation with massive gravitons and gravitomagnetic monopoles is proposed. The real gravitoelectromagnetic field equations are recovered and written in compact form from an octonionic potential. In the absence of charges, this reduces to the Klein-Gordon equation of motion for the massive graviton. The analogy between massive gravitational theory and electromagnetism is shown in terms of the present formulation.

Keywords

Octonion Gravitational field equations Proca-Maxwell equations Monopole 

Notes

Acknowledgements

I thank to the reviewers for their valuable suggestions and constructive feedbacks which substantially helped improving the quality of the paper.

References

  1. 1.
    Maxwell, J.C.: Philos. Trans. 155, 492 (1865) Google Scholar
  2. 2.
    Heaviside, O.: The Electrician 31, 282 (1893) Google Scholar
  3. 3.
    Kopeikin, S.M.: Int. J. Mod. Phys. D 15, 305 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Mashhoon, B., Paik, H.J., Will, C.M.: Phys. Rev. D 39, 2825 (1989) ADSCrossRefGoogle Scholar
  5. 5.
    Dirac, P.A.M.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 133, 60 (1931) ADSCrossRefGoogle Scholar
  6. 6.
    Shen, J.Q.: Ann. Phys. 13, 532 (2004) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Rajput, B.S.: J. Math. Phys. 25, 351 (1984) ADSCrossRefGoogle Scholar
  8. 8.
    Proca, A.: Compt. Rend. 190, 1377 (1930) MATHGoogle Scholar
  9. 9.
    Lakes, R.S.: Phys. Lett. A 329, 298 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    Argyris, J., Ciubotariu, C.: Aust. J. Phys. 50, 879 (1997) ADSMATHGoogle Scholar
  11. 11.
    Hamilton, W.R.: Elements of Quaternions, vols. I, II and III. Chelsea, New York (1899) Google Scholar
  12. 12.
    Singh, A.: Lett. Nuovo Cimento 32, 5 (1981) CrossRefGoogle Scholar
  13. 13.
    Majernik, V.: Astrophys. Space Sci. 84, 191 (1982) MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Bisht, P.S., Negi, O.P.S., Rajput, B.S.: Indian J. Pure Appl. Phys. 24, 543 (1993) MathSciNetGoogle Scholar
  15. 15.
    Bisht, P.S., Negi, O.P.S., Rajput, B.S.: Int. J. Theor. Phys. 32, 2099 (1993) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dangwal, S., Bisht, P.S., Negi, O.P.S.: Russ. Phys. J. 49, 1274 (2006) MATHCrossRefGoogle Scholar
  17. 17.
    Bisht, P.S., Karnatak, G., Negi, O.P.S.: Int. J. Theor. Phys. 49, 1344 (2010) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Demir, S., Tanışlı, M.: Eur. Phys. J. Plus 126, 51 (2011) CrossRefGoogle Scholar
  19. 19.
    Demir, S., Tanışlı, M.: Eur. Phys. J. Plus 126, 115 (2011) CrossRefGoogle Scholar
  20. 20.
    Ulrych, S.: Phys. Lett. B 633, 631 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Carmody, K.: Appl. Math. Comput. 28, 47 (1988) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Carmody, K.: Appl. Math. Comput. 84, 27 (1997) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Chanyal, B.C., Bisht, P.S., Negi, O.P.S.: Int. J. Theor. Phys. 49, 1333 (2010) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Köplinger, J.: Appl. Math. Comput. 182, 443 (2006) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Köplinger, J.: Appl. Math. Comput. 188, 954 (2007) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Köplinger, J.: Appl. Math. Comput. 188, 942 (2007) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Köplinger, J.: Appl. Math. Comput. 188, 948 (2007) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Candemir, N., Özdaş, K., Tanışlı, M., Demir, S.: Z. Naturforsch. A 63, 15 (2008) Google Scholar
  29. 29.
    Demir, S., Tanışlı, M.: Int. J. Theor. Phys. 51, 1239 (2012) MATHCrossRefGoogle Scholar
  30. 30.
    Gogberashvili, M.: Int. J. Mod. Phys. A 21, 3513 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    Gogberashvili, M.: J. Phys. A, Math. Gen. 39, 7099 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  32. 32.
    Bisht, P.S., Negi, O.P.S.: Indian J. Pure Appl. Phys. 31, 292 (1993) Google Scholar
  33. 33.
    Bisht, P.S., Negi, O.P.S.: Pramana—J. Phys. 73, 605 (2009) CrossRefGoogle Scholar
  34. 34.
    Bisht, P.S., Dangwal, S., Negi, O.P.S.: Int. J. Theor. Phys. 47, 2297 (2008) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Nurowski, P.: Acta Phys. Pol. A 116, 992 (2009) Google Scholar
  36. 36.
    Chanyal, B.C., Bisht, P.S., Negi, O.P.S.: Int. J. Theor. Phys. 50, 1919 (2011) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Dzhunushaliev, V.: Phys. Lett. A 355, 298 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  38. 38.
    Dzhunushaliev, V.: J. Math. Phys. 49, 042108 (2008) MathSciNetCrossRefGoogle Scholar
  39. 39.
    Dzhunushaliev, V.: Ann. Phys. 522, 382 (2010) MathSciNetCrossRefGoogle Scholar
  40. 40.
    Nash, P.L.: J. Math. Phys. 51, 042501 (2010) MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Ignatiev, A.U., Joshi, G.C.: Phys. Rev. D 53, 984 (1996) MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    Cafaro, C., Ali, S.A.: Adv. Appl. Clifford Algebras 17, 23 (2007) MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Baez, J.C.: Bull. Am. Math. Soc. 39, 145 (2002) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Physics, Science FacultyAnadolu UniversityEskişehirTurkey

Personalised recommendations