International Journal of Theoretical Physics

, Volume 51, Issue 12, pp 3941–3950 | Cite as

Improved QSDC Protocol over a Collective-Dephasing Noise Channel

  • Chun-Wei Yang
  • Tzonelih Hwang


Recently, Ge and Liu (Chin. Phys. Lett. 24(10):2727–2729, 2007) proposed a quantum secure direct communication (QSDC) protocol using a decoherence-free subspace (DFS) against collective-dephasing noise. Users of their protocol can directly recover the secret message after quantum transmission without transmission of any additional classical information except for the eavesdropping check. This study points out a pitfall in Ge and Liu’s scheme, in which an eavesdropper can deliberately modify the message without being detected. Furthermore, an enhanced scheme is proposed to avoid the modification attack and to improve the qubit efficiency from 8.3 % to 12.5 %.


Collective-dephasing noise Quantum secure direct communication Quantum cryptography 



We would like to thank the anonymous reviewers for their very valuable comments, which greatly enhanced the clarity of this paper. We would also like to thank the National Science Council of Republic of China and the Research Center for Quantum Communication and Security, National Cheng Kung University, Taiwan, Republic of China, for the financial support of this research under Contract No. NSC 100-2221-E-006-152-MY3 and D100-36002, respectively.


  1. 1.
    Long, G.-L., Deng, F.-G., Wang, C., Li, X.-H., Wen, K., Wang, W.-Y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state (vol. 253, p. 15, 2005). Opt. Commun. 262(1), 134 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73(2) (2006) Google Scholar
  4. 4.
    Deng, F.-G., Long, G., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    Wang, C., Deng, F.-G., Li, Y.-S., Liu, X.-S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    Yang, Y., Wen, Q.: Threshold quantum secure direct communication without entanglement. Sci. China Ser. G 51(2), 176–183 (2008) MATHCrossRefGoogle Scholar
  7. 7.
    Deng, F.-G., Long, G.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79(17), 3306 (1997) ADSCrossRefGoogle Scholar
  10. 10.
    Knill, E., Laflamme, R., Viola, L.: Theory of quantum error correction for general noise. Phys. Rev. Lett. 84(11), 2525 (2000) MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Kempe, J., Bacon, D., Lidar, D., Whaley, K.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A 63(4), 042307 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    Boileau, J.C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.W.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92(1), 017901 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    Zhang, Z.J.: Robust multiparty quantum secret key sharing over two collective-noise channels. Physica A 361(1), 233–238 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    Yang, C.-W., Tsai, C.-W., Hwang, T.: Thwarting intercept-and-resend attack on Zhang’s quantum secret sharing using collective rotation noises. Quantum Inf. Process. 11(1), 113–122 (2012) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Robust quantum secure direct communication over collective rotating channel. Commun. Theor. Phys. 53(4), 645–647 (2010) ADSMATHCrossRefGoogle Scholar
  16. 16.
    Yang, C.-W., Tsai, C.-W., Hwang, T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Phys. 54(3), 496–501 (2011) Google Scholar
  17. 17.
    Ge, H., Liu, W.Y.: A new quantum secure direct communication protocol using decoherence-free subspace. Chin. Phys. Lett. 24(10), 2727–2729 (2007) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with potential 100 % qubit efficiency. IET Inf. Secur. 1(1), 43–45 (2007) CrossRefGoogle Scholar
  19. 19.
    Hwang, T., Lee, K.C., Li, C.M.: Provably secure three-party authenticated quantum key distribution protocols. IEEE Trans. Dependable Secure Comput. 4(1), 71–80 (2007) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Cai, Q.-Y.: The “Ping-Pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91(10), 109801 (2003) ADSCrossRefGoogle Scholar
  21. 21.
    Stallings, W.: Cryptography and Network Security: Principles and Practice, 3rd edn. Prentice Hall International, Englewood Cliffs (2003) Google Scholar
  22. 22.
    Lin, J., Hwang, T.: An enhancement on Shi et al.’s multiparty quantum secret sharing protocol. Opt. Commun. 284(5), 1468–1471 (2011) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Lin, J., Tseng, H.-Y., Hwang, T.: Intercept–resend attacks on Chen et al.’s quantum private comparison protocol and the improvements. Opt. Commun. 284(9), 2412–2414 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    Chong, S.-K., Tsai, C.-W., Hwang, T.: Improvement on “Quantum key agreement protocol with maximally entangled states”. Int. J. Theor. Phys. 50(6), 1793–1802 (2011) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Presented at the Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India (1984) Google Scholar
  26. 26.
    Hwang, T., Hwang, C.C., Tsai, C.W.: Quantum key distribution protocol using dense coding of three-qubit W state. Eur. Phys. J. D, Atom. Mol. Opt. Plasma Phys. 61(3), 785–790 (2011) Google Scholar
  27. 27.
    Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against Trojan horse attack. Quantum Phys. (2005). arXiv:quant-ph/0508168v1
  28. 28.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005) ADSCrossRefGoogle Scholar
  29. 29.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack (vol. 72, art no 044302, 2005). Phys. Rev. A 73(4), 049901 (2006) ADSCrossRefGoogle Scholar
  30. 30.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006) ADSCrossRefGoogle Scholar
  31. 31.
    Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84(20), 4729–4732 (2000) ADSCrossRefGoogle Scholar
  32. 32.
    Beveratos, A., Brouri, R., Gacoin, T., Villing, A., Poizat, J.P., Grangier, P.: Single photon quantum cryptography. Phys. Rev. Lett. 89(18), 187901 (2002) ADSCrossRefGoogle Scholar
  33. 33.
    Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4, 43 (2002) ADSCrossRefGoogle Scholar
  34. 34.
    Stucki, D., Gisin, N., Guinnard, O., Ribordy, G., Zbinden, H.: Quantum key distribution over 67 km with a plug&play system. New J. Phys. 4, 41 (2002) ADSCrossRefGoogle Scholar
  35. 35.
    Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84(19), 3762–3764 (2004) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Computer Science and Information EngineeringNational Cheng Kung UniversityTainan CityTaiwan, ROC

Personalised recommendations