International Journal of Theoretical Physics

, Volume 51, Issue 12, pp 3891–3902 | Cite as

Thermodynamical Quantities of Horava-Lifshitz Black Hole

  • J. Sadeghi
  • K. Jafarzade
  • B. Pourhassan


In this paper we consider Horava-Lifshitz black hole and obtain thermodynamical quantities. Such quantities already obtained for KS and LMP solutions of Horava-Lifshitz black hole in spherical space. Now, we calculate thermodynamical quantities of LMP solutions of Horava-Lifshitz black hole in arbitrary space with k=0 and k=±1. So, we can investigate effect of cosmological constant on thermodynamical quantities.


Horava-Lifshitz gravity Lu-Mei-Pop black hole Thermodynamics 


  1. 1.
    Ross, S.F.: Black hole thermodynamics. arXiv:hep-th/0502195
  2. 2.
    Vongehr, S.: Black hole thermodynamics in semi-classical and superstring theory. arXiv:hep-th/9709172
  3. 3.
    Preskill, J.: Do black holes destroy information? arXiv:hep-th/9209058
  4. 4.
    Horava, P.: Phys. Rev. D 79, 084008 (2009). arXiv:0902.3657 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Calcagni, G.: Cosmology of the Lifshitz universe. J. High Energy Phys. 0909, 112 (2009). arXiv:0904.0829 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Cai, R.G., Cao, L.M., Ohta, N.: Topological black holes in Horava-Lifshitz gravity. Phys. Rev. D 80, 024003 (2009). arXiv:0904.3670 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Cai, R.G., Liu, Y., Sun, Y.W.: On the z=4 Horava-Lifshitz gravity. J. High Energy Phys. 0906, 010 (2009). arXiv:0904.4104 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Majhi, B.R.: Hawking radiation and black hole spectroscopy in Horava-Lifshitz gravity. Phys. Lett. B 686, 49 (2010). arXiv:0911.3239 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Myung, Y.S., Kim, Y.W.: Thermodynamics of Horava-Lifshitz black holes. Eur. Phys. J. C 68, 265–270 (2010). arXiv:0905.0179 [hep-th] ADSCrossRefGoogle Scholar
  10. 10.
    Zhou, S.-W., Liu, W.-B.: Black hole thermodynamics of Horava-Lifshitz and IR modified Horava-Lifshitz gravity theory. Int. J. Theor. Phys. 50, 1776–1784 (2011) MATHCrossRefGoogle Scholar
  11. 11.
    Quevedo, H., Sanchez, A., Taj, S., Vazquez, A.: Geometrothermodynamics in Horava-Lifshitz gravity. arXiv:1101.4494 [hep-th]
  12. 12.
    Lu, H., Mei, J., Pope, C.N.: Solutions to Horava gravity. Phys. Rev. Lett. 103, 091301 (2009). arXiv:0904.1595 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Park, M.-I.: The black hole and cosmological solutions in IR modified Horava gravity. J. High Energy Phys. 0909, 123 (2009). arXiv:0905.4480 [hep-th] ADSCrossRefGoogle Scholar
  14. 14.
    Won Lee, H., Kim, Y.-W., Soo Myung, Y.: Slowly rotating black holes in the Horava-Lifshitz gravity. Eur. Phys. J. C 70, 367–371 (2010). arXiv:1008.2243 [hep-th] ADSCrossRefGoogle Scholar
  15. 15.
    Kiritsis, E., Kofinas, G.: Horava-Lifshitz cosmology. Nucl. Phys. B 821, 467–480 (2009). arXiv:0904.1334 [hep-th] MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Nastase, H.: On IR solutions in Horava gravity theories. Phys. Lett. B 681, 463 (2009). arXiv:0904.3604 [hep-th] MathSciNetCrossRefGoogle Scholar
  17. 17.
    Chen, D.Y., Yang, H., Zu, X.T.: Phys. Lett. B 681, 463 (2009). arXiv:1004.4440 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Lee, H.W., Kim, Y.W., Myung, Y.S.: Eur. Phys. J. C 70, 367 (2010). arXiv:1008.2243 [hep-th] ADSCrossRefGoogle Scholar
  19. 19.
    Sadeghi, J., Pourhassan, B.: Particle acceleration in Horava-Lifshitz black holes. Eur. Phys. J. C 72, 1984 (2011). arXiv:1108.4530 [hep-th] ADSCrossRefGoogle Scholar
  20. 20.
    Biswas, R., Chakraborty, S.: Black hole thermodynamics in Horava Lifshitz gravity and the related geometry. Astrophys. Space Sci. 332, 193 (2011). arXiv:1104.3719 [gr-qc] ADSCrossRefGoogle Scholar
  21. 21.
    Kehagias, A., Sfetsos, K.: The black hole and FRW geometries of non-relativistic gravity. Phys. Lett. B 678, 123 (2009) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Dolan, B.P.: Pressure and volume in the first law of black hole thermodynamics. Class. Quantum Gravity 28, 235017 (2011). arXiv:1106.6260 [gr-qc] MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Kiritsis, E., Kofinas, G.: On Horava-Lifshitz black holes. CCTP-2009-16. arXiv:0910.5487 [hep-th]
  24. 24.
    Dolan, B.P.: The cosmological constant and black hole thermodynamic potentials. Class. Quantum Gravity 28, 125020 (2011). arXiv:1008.5023 [gr-qc] MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Amado, I., Faedo, A.: Lifshitz black holes in string theory. J. High Energy Phys. 1107, 004 (2011). arXiv:1105.4862 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Balasubramanian, K., Mc Greevy, J.: An analytic Lifshitz black hole. MIT-CTP/4068, NSF-KITP-09-136. arXiv:0909.0263 [hep-th]
  27. 27.
    Tarro, J., Vandoren, S.: Black holes and black branes in Lifshitz spacetimes. J. High Energy Phys. 1109, 017 (2011). arXiv:1105.6335 [hep-th] ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Sciences Faculty, Department of PhysicsMazandaran UniversityBabolsarIran

Personalised recommendations