International Journal of Theoretical Physics

, Volume 52, Issue 6, pp 1818–1824 | Cite as

Spaces of Abstract Events

  • Ivan Chajda
  • Helmut Länger


We generalize the concept of a space of numerical events in such a way that this generalization corresponds to arbitrary orthomodular posets whereas spaces of numerical events correspond to orthomodular posets having a full set of states. Moreover, we show that there is a natural one-to-one correspondence between orthomodular posets and certain posets with sectionally antitone involutions. Finally, we characterize orthomodular lattices among orthomodular posets.


Numerical event Abstract event Orthomodular poset Effect algebra State Full set of states Antitone involution Sectionally antitone involutions Orthomodular lattice 



Support of the research of both authors by ÖAD, Cooperation between Austria and Czech Republic in Science and Technology, grant No. CZ 01/2011, and of the first author by the Project CZ.1.07/2.3.00/20.0051 Algebraic Methods of Quantum Logics is gratefully acknowledged.


  1. 1.
    Beltrametti, E.G., Dorninger, D., Maczyński, M.J.: On a cryptographical characterization of classical and nonclassical event systems. Rep. Math. Phys. 60, 117–123 (2007) MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Beltrametti, E.G., Maczyński, M.J.: On a characterization of classical and nonclassical probabilities. J. Math. Phys. 32, 1280–1286 (1991) MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Beltrametti, E.G., Maczyński, M.J.: On the characterization of probabilities: a generalization of Bell’s inequalities. J. Math. Phys. 34, 4919–4929 (1993) MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Chajda, I.: Sectionally residuated lattices. Miskolc Math. Notes 6, 27–30 (2005) MathSciNetMATHGoogle Scholar
  5. 5.
    Chajda, I.: Effect-like algebras induced by means of basic algebras. Math. Slovaca 60, 21–32 (2010) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chajda, I.: A representation of weak effect algebras. Math. Slovaca 62, 611–620 (2012) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Chajda, I.: A representation of skew effect algebras. Math. Slovaca (to appear) Google Scholar
  8. 8.
    Chajda, I., Halaš, R., Kühr, J.: Distributive lattices with sectionally antitone involutions. Acta Sci. Math. (Szeged) 71, 19–33 (2005) MathSciNetMATHGoogle Scholar
  9. 9.
    Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures. Heldermann, Lemgo (2007) MATHGoogle Scholar
  10. 10.
    Chajda, I., Kolařík, M.: Dynamic effect algebras. Math. Slovaca 62, 379–388 (2012) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Chajda, I., Länger, H.: A non-associative generalization of effect algebras. Soft Comput. 16, 1411–1414 (2012) MATHCrossRefGoogle Scholar
  12. 12.
    Dorfer, G., Dorninger, D., Länger, H.: On algebras of multidimensional probabilities. Math. Slovaca 60, 571–582 (2010) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Dorfer, G., Dorninger, D., Länger, H.: On the structure of numerical event spaces. Kybernetica 46, 971–981 (2010) MATHGoogle Scholar
  14. 14.
    Dorninger, D.: On the structure of generalized fields of events. Contrib. Gen. Algebra 20, 29–34 (2011) Google Scholar
  15. 15.
    Dorninger, D., Länger, H.: On a characterization of physical systems by spaces of numerical events. ARGESIM Rep. 35, 601–607 (2009) Google Scholar
  16. 16.
    Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer, Dordrecht (2000) MATHGoogle Scholar
  17. 17.
    Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1331–1352 (1994) MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Greechie, R.J.: Orthomodular lattices admitting no states. J. Comb. Theory, Ser. A 10, 119–132 (1971) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Maczyński, M.J., Traczyk, T.: A characterization of orthomodular partially ordered sets admitting a full set of states. Bull. Pol. Acad. Sci., Math. 21, 3–8 (1973) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Faculty of Science, Department of Algebra and GeometryPalacký University OlomoucOlomoucCzech Republic
  2. 2.Faculty of Mathematics and Geoinformation, Institute of Discrete Mathematics and GeometryVienna University of TechnologyViennaAustria

Personalised recommendations