Advertisement

International Journal of Theoretical Physics

, Volume 51, Issue 8, pp 2603–2614 | Cite as

Tomography Theory for the Tripartite Entangled System

  • Cui-hong Lv
  • Hong-yi Fan
  • Ya-wei Wang
Article

Abstract

Based on the newly constructed tripartite entangled state representation and the three-mode Wigner operator whose marginal distributions give the probability of finding the particles in an entangled way, we generalize the tomographic theory to three-dimensional phase space. The entangled Radon transform parameters for the entangled Wigner operator are suitably chosen and the correct quadrature operators are obtained. The eigenstate of the new quadratures is also derived.

Keywords

Quantum tomography Tripartite entangled Wigner function Tripartite entangled state The IWOP technique 

Notes

Acknowledgements

The authors gratefully acknowledge the support from the Research Fund for Advanced Talents of Jiangsu University (NO. 1281190029)

References

  1. 1.
    Radon, J.: Ber. Verh. Saechs. Akad. Wiss. Leipzig Math. Phys. Kl. 69, S262 (1917) Google Scholar
  2. 2.
    Wigner, E.: Phys. Rev. 40, 749 (1932) ADSCrossRefGoogle Scholar
  3. 3.
    Vogel, K., Risken, H.: Phys. Rev. A 40, 2847 (1989) ADSCrossRefGoogle Scholar
  4. 4.
    Smithey, D.T., Beck, M., Raymer, M.G., Faridani, A.: Phys. Rev. Lett. 70, 1244 (1993) ADSCrossRefGoogle Scholar
  5. 5.
    Vogel, W., Schleich, W.P.: Phys. Rev. A 44, 7642 (1991) ADSCrossRefGoogle Scholar
  6. 6.
    Leonhardt, U.: Measuring the Quantum State of Light. Cambridge University Press, New York (1997); and references therein Google Scholar
  7. 7.
    Aspelmeyer, M.: Nat. Phys. 5, 11 (2009) CrossRefGoogle Scholar
  8. 8.
    Chuang, I.L., Nielson, M.A.J.: J. Mod. Opt. 44, 2455 (1997) ADSGoogle Scholar
  9. 9.
    Schleich, W.P.: Quantum Optics in Phase Space. Wiley-VCH, Berlin (2000) Google Scholar
  10. 10.
    Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935) ADSMATHCrossRefGoogle Scholar
  11. 11.
    Fan, H.Y., Yu, G.C.: Mod. Phys. Lett. A 15, 499 (2000) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Fan, H.Y., Jiang, N.Q.: J. Opt. B, Quantum Semiclass. Opt. 5, 283 (2003) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Fan, H.Y., Jiang, N.Q., Lu, H.L.: Mod. Phys. Lett. B 16, 1193 (2002) MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Lv, C.H., Fan, H.Y.: Opt. Commun. 284, 1925 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    Lv, C.H., Fan, H.Y., Jiang, N.Q.: Chin. Phys. B 12, 120303 (2010) Google Scholar
  16. 16.
    Fan, H.Y., Zaidi, H.R., Klauder, J.R.: Phys. Rev. D 35, 1835 (1987) MathSciNetGoogle Scholar
  17. 17.
    Fan, H.Y.: Phys. Rev. A 41, 1526 (1990) ADSCrossRefGoogle Scholar
  18. 18.
    Lv, C.H., Fan, H.Y.: Int. J. Theor. Phys. 49, 1944 (2010) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Weyl, H.: Z. Phys. 46, 1 (1927) ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Faculty of ScienceJiangsu UniversityZhenjiangChina
  2. 2.Department of Material Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations