Advertisement

International Journal of Theoretical Physics

, Volume 51, Issue 8, pp 2594–2602 | Cite as

A Theoretical Solution for a Nonlinear Master Equation

  • Gang Ren
  • Jian-ming Du
Article
  • 95 Downloads

Abstract

Based on the master equation describing the interaction of a single-mode bosonic state with a heat bath at finite temperature in the Born-Markov approximation, we constructed a new nonlinear master equation and derived the infinite operator sum representation of quasi-Kraus operators for the density operator

Keywords

Nonlinear entangled state Nonlinear master equation Operator-sum representation Quasi-Kraus operator 

References

  1. 1.
    Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1973) Google Scholar
  2. 2.
    Gardiner, C., Zoller, P.: Quantum Noise. Springer, Berlin (2000) MATHGoogle Scholar
  3. 3.
    Aarwal, G.S.: Phys. Rev. A 4, 739 (1971) ADSCrossRefGoogle Scholar
  4. 4.
    Daniel, D.J., Milburn, G.J.: Phys. Rev. A 39, 4628 (1989) ADSCrossRefGoogle Scholar
  5. 5.
    Kim, M.S., Buzek, V.: Phys. Rev. A 46, 4239 (1992) ADSCrossRefGoogle Scholar
  6. 6.
    de Matos Filho, R.L., Vogel, W.: Phys. Rev. A 54, 4560 (1996) ADSCrossRefGoogle Scholar
  7. 7.
    Jiang, N.-q., Fan, H.-y., Hu, L.-y.: J. Phys. A, Math. Theor. 44, 195302 (2011) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Jones Haight, G.N., Lee, C.T.: Quantum Semiclassical Opt. 9, 411 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    Fan, H.Y., Cheng, H.L.: Phys. Lett. A 285, 256 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Fan, H.Y., Fan, Y.: Phys. Lett. A 246, 242 (1998) MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Fan, H.Y., Cheng, H.L.: Phys. Lett. A 295, 65 (2002) MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Fan, H.Y., Hu, L.Y.: Mod. Phys. Lett. B 22, 2435 (2008) MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, Berlin (1966) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PhysicsHuainan Normal UniversityHuainanPeople’s Republic of China

Personalised recommendations