Advertisement

International Journal of Theoretical Physics

, Volume 51, Issue 8, pp 2447–2454 | Cite as

Controlled Deterministic Secure Quantum Communication Based on Quantum Search Algorithm

  • Hsin-Yi Tseng
  • Chia-Wei Tsai
  • Tzonelih Hwang
Article

Abstract

In this study, we propose a controlled deterministic secure quantum communication (CDSQC) protocol based on the idea of Grover’s quantum search algorithm (QSA). The proposed protocol has the following two advantages over the existing CDSQC protocols: (1) high qubit frequency and (2) less quantum memory. Moreover, the security analysis of the proposed protocol shows that any eavesdropper will be detected with a very high probability under both ideal and noisy quantum channel conditions.

Keywords

Quantum information science Controlled deterministic secure quantum communication Quantum search algorithm 

Notes

Acknowledgements

The authors would like to thank the National Science Council of the Republic of China and the Research Center of Quantum Communication and Security, National Cheng Kung University, Taiwan, R.O.C. for financially supporting this research under Contract Nos. NSC 100-2221-E-006-152-MY3 and D100-36002, respectively.

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing (invited paper). In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984) Google Scholar
  2. 2.
    Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003) ADSCrossRefGoogle Scholar
  3. 3.
    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A, Math. Theor. 42, 055305 (2009) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Gao, T., Yan, F.-L., Wang, Z.-X.: Controlled quantum teleportation and secure direct communication. Chin. Phys. 14(5), 893 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    Dong, L., Xiu, X.-M., Gao, Y.-J., Ren, Y.-P., Liu, H.-W.: Controlled three-party communication using GHZ-like state and imperfect Bell-state measurement. Opt. Commun. 284(3), 905–908 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    Yang, Y.-G., Chai, H.-P., Teng, Y.-W., Wen, Q.-Y.: Improving the security of controlled quantum secure direct communication by using four particle cluster states against an attack with fake entangled particles. Int. J. Theor. Phys. 50(2), 395–400 (2011) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    Hsu, L.-Y.: Quantum secret sharing protocol based on Grover’s algorithm. Phys. Rev. A 68(2), 022306 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    Hao, L., Li, J.-L., Long, G.-L.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China, Phys. Mech. Astron. 53(3), 491–495 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    Wang, C., Hao, L., Song, S.-Y., Long, G.-L.: Quantum direct communication based on quantum search algorithm. Int. J. Quantum Inf. 8(3), 443–450 (2010) MATHCrossRefGoogle Scholar
  12. 12.
    Wang, J., Zhang, Q., Tang, C.-J.: Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 266(2), 732–737 (2006) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Lin, J., Tseng, H.-Y., Hwang, T.: Intercept-resend attacks on Chen et al.’s quantum private comparison protocol and the improvements. Opt. Commun. 284(9), 2412–2414 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    Yang, C.-W., Tsai, C.-W., Hwang, T.: Thwarting intercept-and-resend attack on Zhang’s quantum secret sharing using collective rotation noises. Quantum Inf. Process. 11(1), 113–122 (2012) MATHCrossRefGoogle Scholar
  15. 15.
    Deng, F.-G., Li, X.-H., Zhou, H.-Y., Zhang, Z.-J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005) ADSCrossRefGoogle Scholar
  16. 16.
    Cai, Q.-Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006) ADSMATHCrossRefGoogle Scholar
  17. 17.
    Chong, S.-K., Luo, Y.-P., Hwang, T.: On “Arbitrated quantum signature of classical messages against collective amplitude damping noise”. Opt. Commun. 284(3), 893–895 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4(43), 1–43 (2002) Google Scholar
  19. 19.
    Gobby, C., Yuan, Z.-L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84(19), 3762 (2004) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Computer Science and Information EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations