Advertisement

International Journal of Theoretical Physics

, Volume 51, Issue 7, pp 2237–2245 | Cite as

Control of Two-Photon Transport in a One-Dimensional Waveguide

  • Wei-Bin Yan
  • Zhong-Ju Liu
  • Ling Zhou
Article

Abstract

We study the system consisting of a one-dimension waveguide side-coupled to a nonlinear cavity which was doped with a lambda-type atom and investigate the control of photons transport in one-dimension waveguide through manipulating the atom contained in the cavity. Employing the polariton technique, we show that in the single-photon case, the system behaves as a waveguide coupled to a two-level system. By solving the Schrödinger equation, we show that single photon switch can be achieved by tuning the Rabi frequency of the classical field. In the two-photon case, the system behaves like a waveguide coupled to a cascade three-level system. Two-photon quantum correlation in the position variation can be controlled by adjusting the Rabi frequency.

Keywords

Waveguide Cavity Correlation 

Notes

Acknowledgements

This work is supported by NSFC under grant no. 11074028, and also supported by SRF for ROCS, SEM.

References

  1. 1.
    Imamoglu, A., Schmidt, H., Woods, G., Deutsch, M.: Phys. Rev. Lett. 79, 1467 (1997) ADSCrossRefGoogle Scholar
  2. 2.
    Harris, S.E., Yamamoto, Y.: Phys. Rev. Lett. 81, 3611 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    Kojima, K., Hofmann, H.F., Takeuchi, S., Sasaki, K.: Phys. Rev. A 68, 013803 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    Koshino, K., Ishihara, H.: Phys. Rev. A 70, 013806 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Nature (London) 436, 87 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    Yun, S., Wen, J., Xu, P., Xiao, M., Zhu, S.N.: Phys. Rev. A 82, 063830 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    Shen, J.T., Fan, S.: Phys. Rev. Lett. 98, 153003 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    Shen, J.T., Fan, S.: Phys. Rev. A 76, 062709 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    Roy, D.: Phys. Rev. B 81, 155117 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    Roy, D.: Phys. Rev. A 83, 043823 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    Shi, T., Sun, C.P.: Phys. Rev. B 79, 205111 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    Shi, T., Fan, S., Sun, C.P.: (2010). arXiv:1009.2828
  13. 13.
    Longo, P., Schmitteckert, P., Busch, K.: Phys. Rev. Lett. 104, 023602 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    Roy, D.: Phys. Rev. Lett. 106, 053601 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    Liao, J.Q., Law, C.K.: Phys. Rev. A 82, 053836 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    Buzek, V., Jex, I.: Opt. Commun. 78, 425 (1990) ADSCrossRefGoogle Scholar
  17. 17.
    Abdel-Aty, M., Abdalla, M.S., Sanders, B.C.: Phys. Lett. A 373, 315–319 (2009) ADSMATHCrossRefGoogle Scholar
  18. 18.
    Hopfield, J.J.: Phys. Rev. 112, 1555 (1958) ADSMATHCrossRefGoogle Scholar
  19. 19.
    Rebić, S., Parkins, A.S., Tan, S.M.: Phys. Rev. A 65, 043806 (2002) ADSCrossRefGoogle Scholar
  20. 20.
    Chong, Y.D., Soljačić, M.: Phys. Rev. A 77, 013823 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    Hartmann, M.J., Brandăo, F.G.S.L., Plenio, M.B.: Nat. Phys. 2, 849 (2006) CrossRefGoogle Scholar
  22. 22.
    Angelakis, D.G., Santos, M.F., Bose, S.: Phys. Rev. A 76, 031805R (2007) ADSCrossRefGoogle Scholar
  23. 23.
    Bose, S., Angelakis, D.G., Burgarth, D.: J. Mod. Opt. 54, 2307–2314 (2007) ADSMATHCrossRefGoogle Scholar
  24. 24.
    Angelakis, D.G., Bose, S., Mancini, S.: Europhys. Lett. 85, 20007 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    Yan, W.B., Liu, Z.J., Zhou, L.: Opt. Commun. 283, 265–269 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    Shen, J.T., Fan, S.: Phys. Rev. A 79, 023837 (2009) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Physics and Optoelectronic TechnologyDalian University of TechnologyDalianP.R. China

Personalised recommendations