Advertisement

International Journal of Theoretical Physics

, Volume 51, Issue 7, pp 2135–2142 | Cite as

Quantum Signature Scheme with Weak Arbitrator

  • Ming-Xing Luo
  • Xiu-Bo Chen
  • Deng Yun
  • Yi-Xian Yang
Article

Abstract

In this paper, we propose one quantum signature scheme with a weak arbitrator to sign classical messages. This scheme can preserve the merits in the original arbitrated scheme with some entanglement resources, and provide a higher efficiency in transmission and reduction the complexity of implementation. The arbitrator is costless and only involved in the disagreement case.

Keywords

Quantum signature Quantum one-way function Quantum public-key cryptosystems 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 61003287, 61170272); the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20100005120002), and the Fundamental Research Funds for the Central Universities (No. SWJTU11BR174).

References

  1. 1.
    Shor, P.W.: SIAM J. Comput. 26(5), 1484–1509 (1997) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Dumais, P., Mayers, D., Salvail, L.: Advances in Cryptology-Eurocrypt 2000, LNSC vol. 1807, pp. 300–315. Springer, Berlin (2000), CrossRefGoogle Scholar
  3. 3.
    Crépeau, C., Légaré, F., Salvail, L.: In: Proc. Euro Advances in Cryptology (2001) Google Scholar
  4. 4.
    Kashefi, E., Kerenidis, I.: Theor. Comput. Sci. 378(1), 101–116 (2007) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Kawachi, A., Kobayashi, H., Koshiba, T., Putra, R.H.: Theor. Comput. Sci. 345, 370–385 (2005) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Zeng, G.H., Keitel, C.H.: Phys. Rev. A 65, 042312 (2002) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Lee, H., Hong, C., Kim, H., Lim, J., Yang, H.J.: Phys. Lett. A 321, 295 (2004) MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Wen, X.J., Liu, Y., Sun, Y.: Z. Naturforsch. A, J. Phys. Sci. 62a, 147 (2007) Google Scholar
  9. 9.
    Zeng, G.H., Lee, M., Guo, Y., He, G.Q.: Int. J. Quantum Inf. 5, 553 (2007) MATHCrossRefGoogle Scholar
  10. 10.
    Gottesman, D., Chuang, I.L.: e-print arXiv:quant-ph/0105032
  11. 11.
    Li, Q., Chan, W.H., Long, D.Y.: Phys. Rev. A 79, 054307 (2009) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Greenberger, D.M., Horne, M.A., Zeilinger, A.: In: Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, pp. 73–76. Kluwer Academics, Dordrecht (1989) Google Scholar
  13. 13.
    Goldreich, O.: Foundations of Cryptography. Cambridge University Press, Cambridge (2001) MATHCrossRefGoogle Scholar
  14. 14.
    Aharonov, D., Ta-shma, A.: arXiv:quant-ph/0301023
  15. 15.
    Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Phys. Rev. Lett. 87, 167902 (2001) ADSCrossRefGoogle Scholar
  16. 16.
    Braunstein, S.L., Caves, C.M.: Phys. Rev. Lett. 72, 3439–3443 (1994) MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Walgate, J., Short, A.J., Hardy, L., Vedral, V.: Phys. Rev. Lett. 85, 4972–4975 (2000) ADSCrossRefGoogle Scholar
  18. 18.
    Xiang, G.Y., Li, J., Guo, G.C.: Phys. Rev. A 71, 044304 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    Nikolopoulos, G.M.: Phys. Rev. A 77, 032348 (2008) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ming-Xing Luo
    • 1
    • 2
    • 3
  • Xiu-Bo Chen
    • 1
    • 2
    • 3
  • Deng Yun
    • 4
  • Yi-Xian Yang
    • 1
    • 2
    • 3
  1. 1.Information Security CenterBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.State Key Laboratory of Information SecurityGraduate University of Chinese Academy of SciencesBeijingChina
  3. 3.Information Security and National Computing Grid Laboratory, School of Information Science and TechnologySouthwest Jiaotong UniversityChengduChina
  4. 4.Institute of Computer ScienceSichuan University of Science & EngineeringZigongChina

Personalised recommendations