Advertisement

International Journal of Theoretical Physics

, Volume 51, Issue 7, pp 2113–2118 | Cite as

Quantum Fisher Information in the Symmetric Pure Three-Qubit State

  • Desheng Liu
  • Juan Du
  • Guo-Qiang Huang
Article

Abstract

We investigate the quantum Fisher information in the symmetric pure three-qubit state. It is shown that the quantum Fisher information and the mean spin direction are determined by the probability amplitudes and the relative phase of the symmetric pure three-qubit state; while the length of mean spin is only determined by the probability amplitudes.

Keywords

Quantum Fisher information Symmetric pure state Probability amplitudes Relative phase 

References

  1. 1.
    Li, S.-S., Huang, Y.B.: Int. J. Quantum Inf. 6, 561 (2008) MATHCrossRefGoogle Scholar
  2. 2.
    Zhang, Z.J., Liu, Y.M., Man, Z.X.: Commun. Theor. Phys. 44, 847 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    Li, S.-S., Nie, Y.Y., Hong, Z.H., Yi, X.J., Huang, Y.B.: Commun. Theor. Phys. 50, 633 (2008) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Zhang, Z.J.: Phys. Lett. A 352, 55 (2006) ADSMATHCrossRefGoogle Scholar
  5. 5.
    Zhang, Z.J., Man, Z.X.: Phys. Lett. A 341, 55 (2005) ADSMATHCrossRefGoogle Scholar
  6. 6.
    Liu, J., Zhang, Z.J.: Commun. Theor. Phys. 49, 887 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    Huang, Y.B., Li, S.S., Nie, Y.Y.: Int. J. Theor. Phys. 48, 95 (2009) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Huang, Y.B., Li, S.S., Nie, Y.Y.: Int. J. Mod. Phys. C 19, 1509 (2008) ADSMATHCrossRefGoogle Scholar
  9. 9.
    Zhang, Z.J., et al.: Phys. Rev. A 71, 044301 (2005) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Zhang, Z.J., et al.: Phys. Rev. A 72, 022303 (2005) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Wang, Z.Y., Liu, Y.M., Wang, D., Zhang, Z.J.: Opt. Commun. 276, 322 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    Zhang, Z.J., Man, Z.X., Li, Y.: Phys. Lett. A 333, 46 (2004) MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Zhang, Z.J., Man, Z.X., Li, Y.: Int. J. Quantum Inf. 2, 521 (2004) CrossRefGoogle Scholar
  14. 14.
    Man, Z.X., Zhang, Z.J., Li, Y.: Chin. Phys. Lett. 22, 22 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    Zhang, Z.J., Man, Z.X., Li, Y.: Phys. Lett. A 333, 46 (2004) MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998) ADSCrossRefGoogle Scholar
  17. 17.
    Peres, A.: Phys. Rev. Lett. 77, 1413 (1996) MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Horodecki, P.: Phys. Lett. A 232, 333 (1997) MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Pezzé, L., Smerzi, A.: Phys. Rev. Lett. 102, 100401 (2009) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Braunstein, S.L., Caves, C.M.: Phys. Rev. Lett. 72, 3439 (1994) MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Wootters, W.K.: Phys. Rev. D 23, 357 (1981) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Boixo, S., Monras, A.: Phys. Rev. Lett. 100, 100503 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    Ma, J., Wang, X., Sun, C.P., Nori, F.: arXiv:1011.2978
  24. 24.
    Lin, C., Xu, A., Zhu, H.: Phys. Rev. A 82, 032301 (2010) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Song, L., Yan, D., Ma, J., Wang, X.: Phys. Rev. E 79, 046220 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    Li, S.-S.: Int. J. Theor. Phys. 50, 719 (2011) MATHCrossRefGoogle Scholar
  27. 27.
    Li, S.-S.: Int. J. Theor. Phys. 50, 767 (2011) MATHCrossRefGoogle Scholar
  28. 28.
    Jin, G.-R., Liu, Y.-C., Liu, W.-M.: New J. Phys. 11, 073049 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    Li, S.-S., Liu, Z.-Y., Xiao, Y.-J.: Int. J. Theor. Phys. (2011). doi: 10.1007/s10773-011-1008-3 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mechanical and Electrical EngineeringJiangxi University of Science and TechnologyNanchangP.R. China
  2. 2.Jiangxi University of Finance and EconomicsNanchangP.R. China

Personalised recommendations