Advertisement

International Journal of Theoretical Physics

, Volume 51, Issue 6, pp 1792–1805 | Cite as

On Charged Analogues of Matese and Whitman Interior Solutions in General Relativity

  • S. K. Maurya
  • Y. K. Gupta
Article

Abstract

A set of three static fluid spheres once derived by Matese and Whitman (in Phys. Rev. D 22:1270, 1980) are charged by means of a particular electric intensity to obtain compact objects like white dwarfs, quark stars and neutron stars etc. The charged objects so obtain and their neutral counterparts are analysed on astrophysical grounds. This revealed that two of the charged spheres and one of the neutral seed solutions are well behaved. The corresponding red shift and adiabatic index together with other physical entities like pressure, density and velocity of sound through the star models are studied systematically.

Keywords

Spherical symmetry Canonical coordinates Charged fluids Super-dense stars General relativity 

References

  1. 1.
    Matese, J.J., Whiteman, P.G.: Phys. Rev. D 22, 1270 (1980) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Schwarzschild, K.: Sitz. Deut. Akad. Wiss. Math.-Phys. Berlin 23, 189 (1916) Google Scholar
  3. 3.
    Schwarzschild, K.: Sitz. Deut. Akad. Wiss. Math.-Phys. Berlin 24, 424 (1916) Google Scholar
  4. 4.
    Tolman, R.C.: Phys. Rev. 55, 364 (1939) ADSMATHCrossRefGoogle Scholar
  5. 5.
    Stephani, H., et al.: Exact Solutions to Einstein’s Field Equations. Cambridge University Press, Cambridge (2003) CrossRefGoogle Scholar
  6. 6.
    Delgaty, M.S.R., Lake, K.: Comput. Phys. Commun. 115, 395 (1998) MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Ivanov, B.V.: Phys. Rev. D 65, 104001 (2002) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Krori, K.D., Barua, J.: J. Phys. A 8, 508 (1975) ADSCrossRefGoogle Scholar
  9. 9.
    Gupta, Y.K., Kumar, M.: Gen. Relativ. Gravit. 37, 575 (2005a) MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Gupta, Y.K., Kumar, M.: Astrophys. Space Sci. 299, 43 (2005b) ADSMATHCrossRefGoogle Scholar
  11. 11.
    Gupta, Y.K., Maurya, S.K.: Astrophys. Space Sci. 332, 415 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    Gupta, Y.K., Maurya, S.K.: Astrophys. Space Sci. 331, 135 (2011) ADSMATHCrossRefGoogle Scholar
  13. 13.
    Pant, N., et al.: Astrophys. Space Sci. 330, 353 (2010) ADSMATHCrossRefGoogle Scholar
  14. 14.
    Pant, N.: Astrophys. Space Sci. 332, 403 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    Pant, N., et al.: Astrophys. Space Sci. 332, 473 (2011a) ADSCrossRefGoogle Scholar
  16. 16.
    Pant, N., et al.: Astrophys. Space Sci. 333, 161 (2011b) ADSMATHCrossRefGoogle Scholar
  17. 17.
    Pant, N.: Astrophys. Space Sci. 334, 267 (2011) ADSMATHCrossRefGoogle Scholar
  18. 18.
    Maurya, S.K., Gupta, Y.K.: Astrophys. Space Sci. 333, 149 (2011) ADSMATHCrossRefGoogle Scholar
  19. 19.
    Maurya, S.K., Gupta, Y.K.: Astrophys. Space Sci. 334, 301 (2011) ADSMATHCrossRefGoogle Scholar
  20. 20.
    Maurya, S.K., Gupta, Y.K., Pratibha: Int. J. Mod. Phys. D 20, 1289 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    Maharaj, S.D., Thirukkanesh, S.: Nonlinear Anal., Real World Appl. 10, 3396 (2009) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Maharaj, S.D., Thirukkanesh, S.: Math. Methods Appl. Sci. 29, 2006 (1943) MathSciNetGoogle Scholar
  23. 23.
    Maharaj, S.D., Komathiraj, K.: Gen. Relativ. Gravit. 39, 2079 (2007a) MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations