Advertisement

International Journal of Theoretical Physics

, Volume 51, Issue 5, pp 1498–1502 | Cite as

Phantom Accretion onto the Schwarzschild Anti de-Sitter Black Hole

  • A. R. Amani
  • H. Farahani
Article

Abstract

In this paper we study phantom energy accretion onto the Schwarzschild anti de-Sitter black hole. We obtain critical point where the speed of flow is equal speed of sound. We find that the critical point is near the black hole horizon.

Keywords

Black hole Accretion AdS geometry Phantom energy 

Notes

Acknowledgements

It is pleasure to thank Islamic Azad University, Ayatollah Amoli Branch for supporting this manuscript.

References

  1. 1.
    Bondi, H.: Mon. Not. R. Astron. Soc. 112, 195 (1952) MathSciNetADSGoogle Scholar
  2. 2.
    Michel, F.C.: Astrophys. Space Sci. 15, 153 (1972) ADSCrossRefGoogle Scholar
  3. 3.
    Babichev, E., Dokuchaev, V., Eroshenko, Y.: Phys. Rev. Lett. 93, 021102 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    Jamil, M., Rashid, M., Qadir, A.: Eur. Phys. J. C 58, 325 (2008) MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Babichev, E., Chernov, S., Dokuchaev, V., Eroshenko, Y.: J. Exp. Theor. Phys. 112784 (2011) Google Scholar
  6. 6.
    Jiménez Madrid, J.A., González-Diaz, P.F.: Gravit. Cosmol. 14(3), 213–225 (2008) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Sharif, M., Abbas, G.: Mod. Phys. Lett. A 26, 1731 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    Sharif, M., Abbas, G.: Phantom accretion onto the Schwarzschild de-Sitter black hole. [arXiv:1109.1043 [gr-qc]] (2011)
  9. 9.
    Sung-Won, K.: J. Korean Phys. Soc. 24, 118 (1991) Google Scholar
  10. 10.
    Chang, J.-F., Shen, Y.-G.: Massive quasinormal modes of a Schwarzschild-de Sitter black hole with a global monopole. Int. J. Theor. Phys. 45(12), 2357 (2006) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hossain Ali, M., Atiqur Rahman, M.: Transverse wave propagation in relativistic two-fluid plasmas around Schwarzschild-de Sitter black hole. Int. J. Theor. Phys. 48, 1717 (2009) MATHCrossRefGoogle Scholar
  12. 12.
    Chang, J.-F., Huang, J., Shen, Y.-G.: Quasi-resonant modes of massive scalar fields in Schwarzschild–de Sitter space-time. Int. J. Theor. Phys. 46, 2617 (2007) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Sen, A.: Developments in superstring theory. hep-th/9810356 v 2 (1998)
  14. 14.
    Maldacena, J.: Adv. Theor. Math. Phys. 2, 231 (1998) MathSciNetADSMATHGoogle Scholar
  15. 15.
    Witten, E.: Adv. Theor. Math. Phys. 2, 253 (1998) MathSciNetMATHGoogle Scholar
  16. 16.
    Zeng, X.-X., Lin, K., Yang, S.-Z.: Hawking radiation from the higher-dimensional Schwarzschild de Sitter and anti-de Sitter black holes via covariant anomaly. Int. J. Theor. Phys. 47, 2533 (2008) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Han, Y.-W., Yang, S.-Z.: Quantum corrections to the radiation of Schwarzschild-anti-de Sitter black hole with topological defect. Commun. Theor. Phys. 47, 1145 (2007) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsAyatollah Amoli Branch, Islamic Azad UniversityAmolIran

Personalised recommendations