Advertisement

International Journal of Theoretical Physics

, Volume 51, Issue 3, pp 838–851 | Cite as

Exact Solutions for Jaynes-Cummings Models with Non-degenerate Two-Photon Transitions in the Ladder Configuration

  • Sudha Singh
  • Amrita
Article

Abstract

In the present paper, the eigenfunctions and eigenvalues of the Hamiltonian of the interacting system have been obtained in two generalized Jaynes Cummings models separately, one in which the transition are mediated by two different modes of photon in the ladder configuration and the other involving two mode multi-photon interaction between the field and the atom. Effect of intensity dependent coupling between the field and the atom in both the above-mentioned cases have been investigated. Graphical features of the time dependence of population inversion have been analyzed when one of the field modes is prepared initially in a coherent state while the other one in a vacuum state.

The unitary transformation method presented here for the special case of exact resonance not only solves the time-dependent problem but also provides the eigensolutions of the interacting Hamiltonian at the same time.

Keywords

Jaynes-Cummings (J-C) model Rotating wave approximation (RWA) Unitary operator \(\hat{T}\) Two-mode ladder model Two-mode k-photon interaction (2k interaction) ladder model Intensity dependent coupling Atomic population inversion W(t

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, G.S., Puri, R.: Phys. Rev. A 33, 1757 (1986) ADSCrossRefGoogle Scholar
  2. 2.
    Ashraf, M.M.: Phys. Rev. A 50, 5116 (1994) ADSCrossRefGoogle Scholar
  3. 3.
    Barnett, S.M., Knight, P.L.: Phys. Rev. 33, 2444 (1988) Google Scholar
  4. 4.
    Bashkirov, E.K.: Laser Phys. 16, 1218 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    Brune, M., Raimond, J.M., Haroche, S.: Phys. Rev. A 35, 154 (1987) ADSCrossRefGoogle Scholar
  6. 6.
    Brune, M., Raimond, J.M., Goy, P., Davidovich, L., Haroche, S.: Phys. Rev. Lett. 59, 1899 (1987) ADSCrossRefGoogle Scholar
  7. 7.
    Buck, B., Sukumar, C.V.: Phys. Lett. A 81, 132 (1981) ADSCrossRefGoogle Scholar
  8. 8.
    Gao, Y.-F., Feng, J., Shi, S.-R.: Int. J. Theor. Phys. 41, 867 (2002) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Gou, S.C.: Phys. Rev. A 40, 5116 (1989) ADSCrossRefGoogle Scholar
  10. 10.
    Haroche, S.: Phys. Rev. Lett. 50, 1903 (1983) ADSCrossRefGoogle Scholar
  11. 11.
    Havrilla, G.H., Carter, C.C.: Appl. Opt. 26, 3510 (1987) ADSCrossRefGoogle Scholar
  12. 12.
    He, L.-S., Feng, X.-L.: Phys. Rev. A 49, 4009 (1994) ADSCrossRefGoogle Scholar
  13. 13.
    Jaynes, E.T., Cummings, F.W.: Proc. IEEE 51, 89 (1963) CrossRefGoogle Scholar
  14. 14.
    Knight, P.L., Radmore, P.M.: Phys. Rev. A 26, 676 (1982) ADSCrossRefGoogle Scholar
  15. 15.
    Meschede, D., Walther, H., Muller, G.: Phys. Rev. Lett. 54, 551 (1985) ADSCrossRefGoogle Scholar
  16. 16.
    Meystre, P., Qualtropani, A.: Phys. Lett. A 49, 85 (1974) ADSCrossRefGoogle Scholar
  17. 17.
    Meystre, P., Zubairy, M.S.: Phys. Lett. A 89, 390 (1982) ADSCrossRefGoogle Scholar
  18. 18.
    Narozhny, N.B., Sanchez-Mondragon, J.J., Eberly, J.H.: Phys. Rev. A 23, 236 (1981) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Puri, R.R., Agarwal, G.S.: Phys. Rev. A 33, 3610 (1987) ADSCrossRefGoogle Scholar
  20. 20.
    Singh, S.: Phys. Rev. A 25, 3206 (1982) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Singh, S.: Pramana J. Phys., 66, 615 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    Yang, X., Wu, Y., Li, Y.: Phys. Rev. A 55, 4545 (1997) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.University Department of PhysicsRanchi UniversityRanchiIndia
  2. 2.UGC Major Research Project, University Department of PhysicsRanchi UniversityRanchiIndia

Personalised recommendations