Advertisement

International Journal of Theoretical Physics

, Volume 51, Issue 3, pp 787–804 | Cite as

Tripartite Entanglements in Noninertial Frames

  • M. Shamirzaie
  • B. Nasr Esfahani
  • M. Soltani
Article

Abstract

Entanglement degradation caused by the Unruh effect is discussed for the tripartite GHZ or W states constructed by modes of a non-interacting quantum field viewed by one inertial observer and two uniformly accelerated observers. For fermionic states, the Unruh effect even for infinite accelerations cannot completely remove the entanglement. However, for the bosonic states, the situation is different and the entanglement vanishes asymptotically. Also, the entanglement is studied for the bipartite subsystems. While for the GHZ states all the bipartite subsystems are identically disentangled, for the W states the bipartite subsystems are somewhat entangled, though, this entanglement can be removed for appropriately accelerated observers. Interestingly, logarithmic negativity as a measure for determining the entanglement of one part of the system relative to the other two parts, is not generally the same for different parts. This means that we encounter tripartite systems where each part is differently entangled to the other two parts.

Keywords

Unruh effect GHZ entanglement W entanglement Logarithmic negativity Bipartite subsystems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouwmeester, D., Ekert, A., Zeilinger, A.: The Physics of Quantum Information. Springer, Berlin (2000) MATHGoogle Scholar
  2. 2.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and Quantum Information. Cambridge University Press, Cambridge (2000) MATHGoogle Scholar
  3. 3.
    Peres, A., Scudo, P.F., Terno, D.R.: Phys. Rev. Lett. 88, 230402 (2002) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Terno, D.R., Peres, A.: Rev. Mod. Phys. 76, 93 (2004) MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Alsing, P.M., Milburn, G.J.: Quantum Inf. Comput. 2, 487 (2002) MathSciNetMATHGoogle Scholar
  6. 6.
    Gingrich, R.M., Adami, C.: Phys. Rev. Lett. 89, 270402 (2002) CrossRefGoogle Scholar
  7. 7.
    Gingrich, R.M., Bergou, A.J., Adami, C.: Phys. Rev. A 68, 042102 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    Li, H., Du, J.: Phys. Rev. A 68, 022108 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    Bartlett, S.D., Terno, D.R.: Phys. Rev. A 71, 012302 (2005) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Alsing, P.M., Milburn, G.J.: Phys. Rev. Lett. 91, 180404 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    Alsing, P.M., McMahon, D., Milburn, G.J.: J. Opt. B, Quantum Semiclass. Opt. 6, S834 (2004) ADSCrossRefGoogle Scholar
  12. 12.
    Fuentes-Schuller, I., Mann, R.B.: Phys. Rev. Lett. 95, 120404 (2005) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Phys. Rev. A 74, 032326 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    Pan, Q., Jing, J.: Phys. Rev. A 74, 024302 (2006) CrossRefGoogle Scholar
  15. 15.
    Alsing, P.M., McMahon, D., Milburn, G.J.: quant-ph/0311096
  16. 16.
    Martín-Martínez, E., León, J.: Phys. Rev. A 81, 032320 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    Martín-Martínez, E., León, J.: Phys. Rev. A 80, 042318 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    Bruschi, D.E., Louko, Jorma, Martín-Martínez, E., Dragan, A., Fuentes, Ivette: Phys. Rev. A 82, 042332 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    Hwang, M., Park, D., Jung, E.: Phys. Rev. A 83, 012111 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    Davies, P.C.W.: J. Phys. A 8, 609 (1975) ADSCrossRefGoogle Scholar
  21. 21.
    Unruh, W.G.: Phys. Rev. D 14, 870 (1976) ADSCrossRefGoogle Scholar
  22. 22.
    Acín, A., Bruß, D., Lewenstein, M., Sanpera, A.: Phys. Rev. Lett. 87, 040401 (2001) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Borsten, L., Dahanayake, D., Duff, M.J., Rubens, W., Ebrahim, H.: Phys. Rev. A 80, 032326 (2009) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Vidal, G., Werner, R.F.: Phys. Rev. A 65, 032314 (2002) ADSCrossRefGoogle Scholar
  25. 25.
    Plenio, M.: quant-ph/0505071 (2005)
  26. 26.
    Birrel, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982) Google Scholar
  27. 27.
    Greiner, W., Müller, B., Rafelski, J.: Quantum Electrodynamics of Strong Fields, pp. 563–571. Springer, New York (1985) Google Scholar
  28. 28.
    Soffel, M., Müller, B., Greiner, W.: Phys. Rev. D 22, 1935 (1980) ADSCrossRefGoogle Scholar
  29. 29.
    Greenberger, D.M., Horne, M.A., Zeilinger, A.: Bell’s Theorem, Quantum Theory, and Conceptions of the Universe. Kluwer Academic, Dordrecht (1989) Google Scholar
  30. 30.
    Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Am. J. Phys. 58, 1131 (1990) MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Agarwal, P., Pati, A.K.: Phys. Rev. A 74, 1131 (1990) Google Scholar
  32. 32.
    Dür, W., Vidal, G., Cirac, J.I.: Phys. Rev. A 62, 062314 (2000) MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Wei, T.C., Goldbart, P.M.: Phys. Rev. A 68, 042307 (2003) ADSCrossRefGoogle Scholar
  34. 34.
    Sharma, S.S.: Phys. Lett. A 311, 111 (2003) MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Jin, L., Song, Z.: Phys. Rev. A 79, 042341 (2009) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Physics, Faculty of SciencesUniversity of IsfahanIsfahanIran

Personalised recommendations