Advertisement

International Journal of Theoretical Physics

, Volume 51, Issue 1, pp 35–48 | Cite as

Algebraic Structure and Poisson’s Integral Theory of f(R) Cosmology

  • Jing-Li Fu
  • Feng-Ping Xie
  • Yong-Xin Guo
Article

Abstract

In this paper, the algebraic structure and the Poisson’s integral theory of f(R) cosmology are presented. Firstly, the Hamilton canonical equations are derived for the system. Secondly, the contravariant algebraic forms of f(R) cosmology are obtained. Thirdly, the Lie algebraic structure admitted and Poisson’s integral methods are investigated for f(R) cosmology. Further, the first integrals and solution of f(R) cosmology are given. Finally, an example is given to illustrate the results.

Keywords

f(R) cosmology Algebraic structure Poisson integral method First integral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carroll, S.M.: Rev. Rel. 4 (2001). astro-ph/0004075
  2. 2.
    Nojiri, S., Odintsov, S.D.: Int. J. Geom. Methods Mod. Phys. 4, 115 (2007) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Vakili, B.: Phys. Lett. B 664, 16 (2008) CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Ray, J.R., Reid, J.L.: Phys. Lett. A 71, 317 (1979) CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Reid, J.L., Ray, J.R.: J. Phys. A 15, 2751 (1982) CrossRefMATHADSMathSciNetGoogle Scholar
  6. 6.
    Lutzky, M.: J. Phys. A 11, 249 (1978) CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Lutzky, M.: J. Phys. A 12, 973 (1979) CrossRefMATHADSMathSciNetGoogle Scholar
  8. 8.
    Burgan, J.R., et al.: Phys. Lett. A 74, 11 (1979) CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Zhang, H.B., Chen, L.Q.: J. Phys. Soc. Jpn. 74, 905 (2005) CrossRefMATHADSGoogle Scholar
  10. 10.
    Ray, J.R.: Phys. Rev. D 20, 2632 (1979) CrossRefADSGoogle Scholar
  11. 11.
    Korsch, H.J.: Phys. Lett. A 74, 294 (1979) CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Kaushal, R.S., Korsch, H.J.: J. Math. Phys. 22, 1904 (1981) CrossRefMATHADSMathSciNetGoogle Scholar
  13. 13.
    Kaushal, R.S., Mishra, S.C.: J. Math. Phys. 34, 5843 (1993) CrossRefMATHADSMathSciNetGoogle Scholar
  14. 14.
    Mei, F.X.: Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems. Science Press, Beijing (1999) (in Chinese) Google Scholar
  15. 15.
    Mei, F.X.: Int. J. Non-Linear Mech. 35, 229 (2000) CrossRefMATHADSGoogle Scholar
  16. 16.
    Mei, F.X.: ASME Appl. Mech. Rev. 53, 283 (2000) CrossRefADSGoogle Scholar
  17. 17.
    Wolf, F., Korsch, H.: J. Phys. Rev. A 37, 1934 (1988) CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Belmonte-Beitia, J., Pérez-García, V.M., Vekslerchik, V., Torres, P.J.: Phys. Rev. Lett. 98, 064102 (2007) CrossRefADSGoogle Scholar
  19. 19.
    Camci, U., Kucukakca, Y.: Phys. Rev. D 76, 084023 (2007) CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Sanyal, A.K., Modak, B., Rubano, C., Piedipalumbo, E.: Gen. Relativ. Gravit. 37(2), 407 (2005) CrossRefMATHADSMathSciNetGoogle Scholar
  21. 21.
    Sanyal, A.K., Modak, B.: Class. Quantum Gravity 19, 515 (2002) CrossRefMATHADSMathSciNetGoogle Scholar
  22. 22.
    Vakili, B.: Phys. Lett. B 669, 206 (2008) CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Capozziello, S., Stabile, A., Troisi, A.: Class. Quantum Gravity 24, 2153 (2007) CrossRefMATHADSMathSciNetGoogle Scholar
  24. 24.
    Fu, J.L., Chen, X.W., Luo, S.K.: Appl. Math. Mech. 20, 1266 (1999) CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Liu, H.J., Tang, Y.F., Fu, J.L.: Chin. Phys. 15, 1653 (2006) CrossRefADSGoogle Scholar
  26. 26.
    Capozziello, S., De Ritis, R., Rubano, C.: Phys. Lett. A 177, 18 (1993) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Mathematical PhysicsZhejiang Sci-Tech UniversityHangzhouChina
  2. 2.Department of PhysicsLiaoning UniversityShenyangChina

Personalised recommendations