Advertisement

Virial Theorem for Angular Displacement and Torque

  • Nian-quan Jiang
  • Hong-yi Fan
  • Shuai Wang
  • Jun-hua Chen
  • Long-Ying Tang
  • Wen-Jing Gu
  • Gen-Chang Cai
Article

Abstract

The usual Virial theorem is expressed through the coordinate and the force, \(2\langle T\rangle =\langle X\frac{dV}{dX}\rangle =-\langle XF\rangle \), \(F=-\frac{dV}{dX}\), XF is the work done by the force F, T is the kinetic energy. In this paper we extend the usual discussion on the Virial theorem about coordinate-force variables to the case of angular displacement-torque variables. By virtue of introducing the entangled state representation and the bosonic operator realization of the Hamiltonian of quantum pendulum system we derive the Virial theorem for angular variable and torque.

Keywords

Virial theorem Entangled state representation Angular variable and torque 

References

  1. 1.
    Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, Reading (1980) MATHGoogle Scholar
  2. 2.
    Hellmann, H.: Einfuhrung in die Quantenchemie. Deuticke, Leipzig (1937) Google Scholar
  3. 3.
    Feynmann, R.P.: Phys. Rev. 56, 340 (1939) ADSCrossRefGoogle Scholar
  4. 4.
    Atkins, P.W., Friedman, R.S.: Molecular Quantum Mechanics, 3rd edn. Oxford University Press, New York (1997) Google Scholar
  5. 5.
    Guo, Q., Fan, H.-y.: Commun. Theor. Phys. 50, 117 (2008) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Fan, H.-y., Chen, B.-z.: Phys. Lett. A 203, 95 (1995) ADSCrossRefGoogle Scholar
  7. 7.
    Condon, E.U.: Phys. Rev. 31, 891 (1928) ADSCrossRefGoogle Scholar
  8. 8.
    Cook, G.P., Zaidins, C.S.: Am. J. Phys. 54, 259 (1986) ADSCrossRefGoogle Scholar
  9. 9.
    Baker, G.L., Blackburn, J.A., Smith, H.J.T.: Am. J. Phys. 70, 525 (2002) CrossRefGoogle Scholar
  10. 10.
    Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935) ADSMATHCrossRefGoogle Scholar
  11. 11.
    Fan, H.Y., Zaidi, H.R., Klauder, J.R.: Phys. Rev. D 35, 1831 (1987) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Fan, H.-y., Lu, H.-l., Fan, Y.: Ann. Phys. 321, 480 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Jiang, N.Q., Zheng, Y.-Z.: Phys. Rev. A 74, 012306 (2006) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Jiang, N.Q., Fan, H.-Y.: Commun. Theor. Phys. 49, 225 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    Jiang, N.Q., Jing, B.-q., Zhang, Y., Cai, G.-C.: Europhys. Lett. 84, 14002 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    Jiang, N.Q., Wang, Y.J.: Chin. Phys. Lett. 27, 010302 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    Jiang, N.Q., Wang, Y.J., Zheng, Y.Z., Cai, G.C.: Chin. Phys. Lett. 25, 1943 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    Fan, H.-y., Klauder, J.R.: Phys. Rev. A 49, 704 (1994) ADSCrossRefMATHGoogle Scholar
  19. 19.
    Fan, H.-y., Chen, B.-z.: Phys. Rev. A 53, 2948 (1996) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nian-quan Jiang
    • 1
  • Hong-yi Fan
    • 2
  • Shuai Wang
    • 2
  • Jun-hua Chen
    • 3
  • Long-Ying Tang
    • 1
  • Wen-Jing Gu
    • 1
  • Gen-Chang Cai
    • 4
  1. 1.College of Physics and Electric InformationWenzhou UniversityWenzhouChina
  2. 2.Department of PhysicsShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Department of Material Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina
  4. 4.College of MusicWenzhou UniversityWenzhouChina

Personalised recommendations