Advertisement

International Journal of Theoretical Physics

, Volume 50, Issue 11, pp 3509–3514 | Cite as

Correction to Entropy of Schwarzschild Black Hole by Modified Dispersion Relation

  • Fan Zhao
Article

Abstract

Taking WKB approximation to solve the scalar field equation in the Schwarzschild black hole spacetime, we can get the classical momenta. Substituting the classical momenta into state density equation corrected by the modified dispersion relation, we will obtain the number of quantum states with energy less than ω. Then, it is used to calculate the statistical-mechanical entropy of the scalar field in the Schwarzschild black hole spacetime. By taking exact method, we obtained the leader term of entropy which is proportional to the event horizon area and correction terms take the forms of ln A, A −1ln A, A −1 and so on.

Keywords

Modified dispersion relation State density Black hole entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    t’Hooft, G.: Nucl. Phys. B 256(7), 27 (1985) MathSciNetGoogle Scholar
  4. 4.
    Lee, M.H., Kim, J.K.: Phys. Rev. D 54, 3904 (1996) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Lee, M.H., Kim, J.K.: Phys. Lett. A 212, 323 (1996) MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Mann, R.B., Solodukhin, S.N.: Phys. Rev. D 54, 3932 (1996) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Winstanley, E.: Phys. Rev. D 63, 084013 (2001) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Jing, J.L., Yan, M.L.: Phys. Rev. D 64, 064015 (2001) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Jing, J.L., Yan, M.L.: Phys. Rev. D 63, 084028 (2001) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Li, X.: Phys. Rev. D 65, 084005 (2002) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wei, Y.H., Wang, Y.C., Zhao, Z.: Phys. Rev. D 65, 124023 (2002) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Ghosh, T., SenGupta, S.: Phys. Rev. D 78, 024045 (2008) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Li, X., Zhao, Z.: Phys. Rev. D 62, 104001 (2000) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    He, F., Zhao, Z., Kim, S.W.: Phys. Rev. D 64, 044025 (2001) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Chang, L.N., Minic, D., Okamura, N., Takeuchi, T.: Phys. Rev. D 65, 125028 (2002) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Nouicer, K.: Phys. Lett. B 646, 63 (2007) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Kim, Y.W.: Phys. Rev. D 77, 067501 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    Li, X.: Phys. Lett. B 540, 9 (2002) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Kim, W., Kim, Y.W., Park, Y.J.: Phys. Rev. D 74, 104001 (2006) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Kim, W., Kim, Y.W., Park, Y.J.: Phys. Rev. D 75, 127501 (2007) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Yoon, M.: Phys. Rev. D 76, 047501 (2007) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Jeffrey, A.: Table of Integrals, Series, and Products. Academic Press, San Diego (2000) MATHGoogle Scholar
  23. 23.
    Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984) MATHGoogle Scholar
  24. 24.
    Kim, Y.W., Park, Y.J.: Phys. Lett. B 655, 172 (2007) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Orient Science and Technology CollegeHunan Agricultural UniversityChangShaPeople’s Republic of China

Personalised recommendations