Advertisement

International Journal of Theoretical Physics

, Volume 50, Issue 11, pp 3503–3508 | Cite as

Cardy-Verlinde Formula and Thermodynamics of Dilaton-axion Black Hole

  • M. R. Setare
  • Mubasher Jamil
Article
  • 54 Downloads

Abstract

In this paper, we have shown that the entropy of the dilaton-axion black hole can be expressed by the Cardy-Verlinde formula. The later is supposed to be an entropy formula of conformal field theory in any dimension. Next we have calculated the first order correction to the Cardy-Verlinde formula in the context of dilaton-axion black hole.

Keywords

Conformal field theory Dilaton-axion black hole Entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akbar, M., Saifullah, K.: arXiv:1002.3581v1 [gr-qc] (2010)
  2. 2.
    Akbar, M., Saifullah, K.: arXiv:1002.3901v1 [gr-qc] (2010)
  3. 3.
    Banerjee, R., Modak, S.K.: J. High Energy Phys. 0911, 073 (2009) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Birmingham, D., Mokhtari, S.: Phys. Lett. B 508, 365 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Cai, R.-G.: Nucl. Phys. B 628, 375–386 (2002) ADSMATHCrossRefGoogle Scholar
  6. 6.
    Cai, R.-G.: Phys. Lett. B 525, 331–336 (2002) MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Carlip, S.: Class. Quantum Gravity 17, 4175 (2000) MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Das, S., Majumdar, P., Bhaduri, R.K.: Class. Quantum Gravity 19, 2355 (2002) MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Garfinkle, D., et al.: Phys. Rev. D 43, 3140 (1991) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Ghosh, T., SenGupta, S.: J. High Energy Phys. 0510, 064 (2005) Google Scholar
  11. 11.
    Ghosh, T., SenGupta, S.: Phys. Rev. D, Part. Fields 78, 124005 (2008) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Gibbons, G.W., Perry, M.J., Pope, C.N.: Phys. Rev. D 72, 084028 (2005) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Gour, G.: Phys. Rev. D 66, 104022 (2002) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Jamil, M., Farooq, M.U.: J. Cosmol. Astropart. Phys. 1003, 001 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    Jamil, M., Sheykhi, A., Farooq, M.U.: arXiv:1003.2093v1 [hep-th] (2010)
  16. 16.
    Kaul, R.K., Majumdar, P.: Phys. Rev. Lett. 84, 5255 (2000) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Klemm, D., Petkou, A.C., Siopsis, G.: Nucl. Phys. B 601, 380 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Lee, Ch.O.: Phys. Lett. B 670, 146 (2008) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Lidsey, J.E., et al.: Phys. Lett. B 544, 337 (2002) MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    Medved, A.J.M.: Class. Quantum Gravity 19, 2503 (2002) MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Mukherjee, S., Pal, S.S.: J. High Energy Phys. 0205, 026 (2002) ADSCrossRefGoogle Scholar
  22. 22.
    Mukherji, S., Pal, S.S.: J. High Energy Phys. 0205, 026 (2002) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    O’Neill, C.M.: Phys. Rev. D 50, 865 (1994) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Setare, M.R.: Mod. Phys. Lett. A 17, 2089 (2002) MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    Setare, M.R.: Eur. Phys. J. C 33, 555 (2004) MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    Setare, M.R., Altaie, M.B.: Eur. Phys. J. C 30, 273 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Setare, M.R., Jamil, M.: Phys. Lett. B 681, 471 (2009) MathSciNetADSGoogle Scholar
  28. 28.
    Setare, M.R., Jamil, M.: arXiv:1001.4716v1 [physics.gen-ph] (2010)
  29. 29.
    Setare, M.R., Mansouri, R.: Int. J. Mod. Phys. A 18, 4443 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  30. 30.
    Setare, M.R., Vagenas, E.C.: Phys. Rev. D 68, 064014 (2003) MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Setare, M.R., Vagenas, E.C.: Int. J. Mod. Phys. A 20, 7219 (2005) MathSciNetADSMATHCrossRefGoogle Scholar
  32. 32.
    Sur, S., et al.: J. High Energy Phys. 0510, 064 (2005) MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    ’t Hooft, G.: Int. J. Mod. Phys. A 11, 4623 (1996) MathSciNetADSMATHCrossRefGoogle Scholar
  34. 34.
    Verlinde, E.: hep-th/0008140 (2008)
  35. 35.
    Wang, B., Abdalla, E., Su, R.K.: Phys. Lett. B 503, 394 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  36. 36.
    Wei, H.: Commun. Theor. Phys. 52, 743–749 (2009) ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of SciencePayame Noor UniversityBijarIran
  2. 2.Center for Advanced Mathematics and PhysicsNational University of Sciences and Technology (NUST)IslamabadPakistan

Personalised recommendations