Advertisement

Algebra Solutions of Antiferromagnet-Antiferromagnet-Ferromagnet Quantum Heisenberg Chains Related to Sp(6,R) Lie Algebra

  • Shuo Jin
  • Bing-Hao Xie
Article

Abstract

Antiferromagnet-antiferromagnet-ferromagnet (AF-AF-F) quantum Heisenberg chains in linear spin-wave frame is shown explicitly to have an su(1,2) algebraic structure, and its algebra solutions related to the Sp(6,R) Lie algebra are derived by using an algebraic method. It is found that the energy spectrum of the system is determined by one-boson excitation energies built on a vector coherent state of Sp(6,R)⊃U(1,2).

Keywords

Antiferromagnet-antiferromagnet-ferromagnet su(1,2) algebra Sp(6,R) Lie algebra Vector coherent states 

References

  1. 1.
    Hammer, P.R., et al.: Phys. Rev. B 59, 1008 (1999) ADSCrossRefGoogle Scholar
  2. 2.
    Eggert, S., Affleck, I., Takahashi, M.: Phys. Rev. Lett. 73, 332 (1994) ADSCrossRefGoogle Scholar
  3. 3.
    Inoue, K., Iwahori, F., Markosyan, A.S., Iwamura, H.: Coord. Chem. Rev. 198, 219 (2000) CrossRefGoogle Scholar
  4. 4.
    Ribas, J., Escuer, A., Monfort, M., Vicente, R., Cortes, R., Lezama, L., Rojo, T.: Coord. Chem. Rev. 192–195, 1027 (1999) CrossRefGoogle Scholar
  5. 5.
    Goher, M.A.S., Cano, J., Journaux, Y., Abu-Youssef, M.A.M., Mautner, F.A., Escuer, A., Vicente, R.: Chem. Eur. J. 6, 778 (2000) CrossRefGoogle Scholar
  6. 6.
    Ribas, J., Monfort, M., Solans, X., Drillon, M.: Inorg. Chem. 33, 742 (1994) CrossRefGoogle Scholar
  7. 7.
    Ovchinnikov, A.S., Bostrem, I.G., Sinitsyn, V.E., Boyarchenkov, A.S., Baranov, N.V., Inoue, K.: J. Phys. C 14, 8067 (2002) Google Scholar
  8. 8.
    Gu, B., Su, G., Gao, S.: J. Phys. C 17, 6081 (2005) Google Scholar
  9. 9.
    Gu, B., Su, G.: Phys. Rev. B 73, 134427 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    Gong, S.S., Gu, B., Su, G.: Phys. Lett. A 372, 2322 (2008) ADSCrossRefMATHGoogle Scholar
  11. 11.
    Zhong, G.Q., Gong, S.S., Zheng, Q.R., Su, G.: Phys. Lett. A 373, 1687 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    Bethe, H.A.Z.: Sov. Phys. JETP 34, 7 (1958) Google Scholar
  13. 13.
    Chen, J.L., Ge, M.L., Xue, K.: Phys. Rev. E 60, 1486 (1999) ADSCrossRefGoogle Scholar
  14. 14.
    Anderson, P.W.: Phys. Rev. 83, 1260 (1951) ADSMATHCrossRefGoogle Scholar
  15. 15.
    Kubo, R.: Phys. Rev. 87, 568 (1952) ADSMATHCrossRefGoogle Scholar
  16. 16.
    Callaway, J.: Quantum Theory of the Solid State. Academic Press, New York (1976) Google Scholar
  17. 17.
    Zhang, W.M., Feng, D.H., Gilmore, R.: Rev. Mod. Phys. 62, 867 (1990) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Xie, B.H., Zhang, H.B., Chen, J.L.: Commun. Theor. Phys. 38, 292 (2002) MathSciNetGoogle Scholar
  19. 19.
    Jin, S., Xie, B.H., Yu, Z.X., Hou, J.M.: Commun. Theor. Phys. 49, 1151 (2008) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Holstein, T., Primakoff, H.: Phys. Rev. 58, 1098 (1952) ADSCrossRefGoogle Scholar
  21. 21.
    Rowe, D.J.: Rep. Prog. Phys. 48, 1419 (1985) ADSCrossRefGoogle Scholar
  22. 22.
    Draayer, J.P., Weeks, K.J., Rosensteel, G.: Nucl. Phys. A 413, 215 (1984) ADSCrossRefGoogle Scholar
  23. 23.
    Pan, F., Dai, L.R.: Commun. Theor. Phys. 35, 661 (2001) MathSciNetMATHGoogle Scholar
  24. 24.
    Mehra, J.: The golden age of theoretical physics: PAM Dirac’s scientific work from 1924–1933. In: Salam, A., Wigner, E.P. (eds) Aspect of Quantum Theory. Cambridge University Press Google Scholar
  25. 25.
    Goshen, S., Lipkin, H.J.: Ann. Phys. NY 6, 301 (1959) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Rowe, D.J., Le Blanc, R., Hecht, K.T.: J. Math. Phys. 29, 287 (1988) MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Castanos, O., Chacon, E., Moshinsky, M.: J. Math. Phys. 25, 1211 (1984) MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Physics and Nuclear Energy EngineeringBeihang UniversityBeijingChina
  2. 2.School of Applied ScienceBeijing Information Science and Technology UniversityBeijingChina

Personalised recommendations