International Journal of Theoretical Physics

, Volume 50, Issue 12, pp 3857–3863 | Cite as

Transformations on Bounded Observables Preserving Measure of Compatibility

  • Lajos Molnár
  • Werner Timmermann


In this paper we describe the structure of all bijective nonlinear maps on the space of all bounded self-adjoint operators acting on a complex separable Hilbert space of dimension at least 3 which preserve a measure of commutativity, namely, the norm of the commutator of operators.


Bounded observables Self-adjoint operators Compatibility Commutativity Preservers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Choi, M.D., Jafarian, A.A., Radjavi, H.: Linear maps preserving commutativity. Linear Algebra Appl. 87, 227–241 (1987) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Li, C.K., Poon, E., Sze, N.S.: Preservers for norms of Lie product. Oper. Matrices 3, 187–203 (2009) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Molnár, L.: Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces. Lecture Notes in Mathematics, vol. 1895, p. 236. Springer, Berlin (2007) MATHGoogle Scholar
  4. 4.
    Molnár, L.: Linear maps on observables in von Neumann algebras preserving the maximal deviation. J. Lond. Math. Soc. 81, 161–174 (2010) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Molnár, L., Barczy, M.: Linear maps on the space of all bounded observables preserving maximal deviation. J. Funct. Anal. 205, 380–400 (2003) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Molnár, L., Šemrl, P.: Non-linear commutativity preserving maps on self-adjoint operators. Q. J. Math. 56, 589–595 (2005) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Nagy, G.: Commutativity preserving maps on quantum states. Rep. Math. Phys. 63, 447–464 (2009) MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of DebrecenDebrecenHungary
  2. 2.Institut für AnalysisTechnische Universität DresdenDresdenGermany

Personalised recommendations