Skip to main content
Log in

Thermodynamic Gravity and the Schrödinger Equation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We adopt a formulation of the Mach principle that the rest mass of a particle is a measure of it’s long-range collective interactions with all other particles inside the horizon. As a consequence, all particles in the universe form a ‘gravitationally entangled’ statistical ensemble and one can apply the approach of classical statistical mechanics to it. It is shown that both the Schrödinger equation and the Planck constant can be derived within this Machian model of the universe. The appearance of probabilities, complex wave functions, and quantization conditions is related to the discreetness and finiteness of the Machian ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. Math. Phys. 31, 161 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  3. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  4. Unruh, W.G.: Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  5. Maldacena, J.M.: Adv. Theor. Math. Phys. 2, 231 (1998). arXiv:hep-th/9711200

    ADS  MATH  MathSciNet  Google Scholar 

  6. Jacobson, T.: Phys. Rev. Lett. 75, 1260 (1995). arXiv:gr-qc/9504004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Wang, T.: Phys. Rev. 81, 104045 (2010). arXiv:1001.4965 [hep-th]

    Google Scholar 

  8. Verlinde, E.P.: arXiv:1001.0785 [hep-th]

  9. Padmanabhan, T.: Class. Quantum Gravity 21, 4485 (2004). arXiv:gr-qc/0308070

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Padmanabhan, T.: Rep. Prog. Phys. 73, 046901 (2010). arXiv:0911.5004 [gr-qc]

    Article  ADS  Google Scholar 

  11. Hu, B.L.: arXiv:1010.5837 [gr-qc]

  12. Wetterich, C.: Ann. Phys. 325, 1359 (2010). arXiv:1003.3351 [quant-ph]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Wetterich, C.: J. Phys. Conf. Ser. 174, 012008 (2009). arXiv:0811.0927 [quant-ph]

    Article  ADS  MATH  Google Scholar 

  14. Grössing, G.: Physica A 388, 811 (2009). arXiv:0808.3539 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  15. Grössing, G.: Phys. Lett. A 372, 4556 (2008). arXiv:0711.4954 [quant-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  17. Greenberger, D.M., Horne, M.A., Zeilinger, A.: In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe. Kluwer, Dordrecht (1989)

    Google Scholar 

  18. Gogberashvili, M.: Eur. Phys. J. C 54, 671 (2008). arXiv:0707.4308 [hep-th]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Gogberashvili, M.: Eur. Phys. J. C 63, 317 (2009). arXiv:0807.2439 [gr-qc]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Gogberashvili, M.: arXiv:0910.0169 [physics.gen-ph]

  21. Gogberashvili, M., Kanatchikov, I.: arXiv:1009.2266 [gr-qc]

  22. Gogberashvili, M., Kanatchikov, I.: arXiv:1012.5914 [physics.gen-ph]

  23. Winterberg, F.: Z. Naturforsch. A 58, 231 (2003)

    Google Scholar 

  24. Mashhoon, B.: Ann. Phys. 17, 705 (2008). arXiv:0805.2926 [gr-qc]

    Article  MATH  MathSciNet  Google Scholar 

  25. Mashhoon, B.: Ann. Phys. 16, 57 (2007). arXiv:hep-th/0608010

    Article  MATH  MathSciNet  Google Scholar 

  26. Deser, S., Woodard, R.P.: Phys. Rev. Lett. 663, 111301 (2007). arXiv:0706.2151 [astro-ph]

    Article  ADS  MathSciNet  Google Scholar 

  27. Capozziello, S., Elizalde, E., Nojiri, S., Odintsov, S.D.: Phys. Lett. B 671, 193 (2009). arXiv:0809.1535

    Article  ADS  Google Scholar 

  28. Hehl, F.W., Mashhoon, B.: Phys. Rev. D 79, 064028 (2009). arXiv:0902.0560 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  29. Hehl, F.W., Mashhoon, B.: Phys. Lett. 673, 279 (2009). arXiv:0812.1059 [gr-qc]

    MathSciNet  Google Scholar 

  30. Barbour, J., Pfister, H.: Mach’s Principle: From Newton’s Bucket to Quantum Gravity. In: Einstein studies, Vol. 6. Birkhäuser, Boston (1995)

    Google Scholar 

  31. Ghosh, A.: Origin of Inertia. Apeiron, Montreal (2000)

    Google Scholar 

  32. Hughes, V.W., Robinson, H.G., Beltran-Lopez, V.: Phys. Rev. Lett. 4, 342 (1960)

    Article  ADS  Google Scholar 

  33. Drever, R.W.P.: Philos. Mag. 6, 683 (1961)

    Article  ADS  Google Scholar 

  34. Nikolić, H.: Found. Phys. 37, 1563 (2007). arXiv:quant-ph/0609163

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Madelung, E.: Z. Phys. 40, 322 (1926)

    ADS  Google Scholar 

  36. Nelson, E.: Phys. Rev. 150, 1079 (1966)

    Article  ADS  Google Scholar 

  37. Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1985)

    MATH  Google Scholar 

  38. Bohm, D.: Phys. Rev. 85, 166 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  39. Hall, M.J.W., Reginatto, M.: Fortschr. Phys. 50, 646 (2002). arXiv:quant-ph/0201084.

    Article  MATH  MathSciNet  Google Scholar 

  40. Hall, M.J.W., Reginatto, M.: J. Phys. A 35, 3289 (2002). arXiv:quant-ph/0102069

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Sciama, D.W.: Mon. Not. R. Astron. Soc. 113, 34 (1953)

    ADS  MATH  MathSciNet  Google Scholar 

  42. Sciama, D.W.: Sci. Am. 196, 99 (1957)

    Article  Google Scholar 

  43. Dirac, P.A.M.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 338, 439 (1974)

    Article  ADS  Google Scholar 

  44. Hawking, S.: A Brief History of Time. Bantam, Toronto (1988)

    Google Scholar 

  45. Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972)

    Google Scholar 

  46. Will, C.M.: Phys. Rev. D 45, 403 (1992)

    Article  ADS  Google Scholar 

  47. Will, C.M.: Living Rev. Rel. 9(3) (2006). arXiv:gr-qc/0510072

  48. Fisher, R.A.: Proc. Camb. Philol. Soc. 22, 700 (1925)

    Article  MATH  ADS  Google Scholar 

  49. Frieden, B.R.: Science from Fisher Information. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  50. Kapsa, V., Skála, L.: J. Phys. A 42, 315202 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  51. Valentini, A.: Phys. Lett. A 228, 215 (1997). arXiv:0812.4941 [quant-ph]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. Takabayasi, T.: Prog. Theor. Phys. 8, 143 (1952)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. Takabayasi, T.: Prog. Theor. Phys. 9, 187 (1953)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. Wallstrom, T.C.: Phys. Rev. A 49, 1613 (1994)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merab Gogberashvili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogberashvili, M. Thermodynamic Gravity and the Schrödinger Equation. Int J Theor Phys 50, 2391–2402 (2011). https://doi.org/10.1007/s10773-011-0727-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-0727-9

Keywords

Navigation