International Journal of Theoretical Physics

, Volume 50, Issue 8, pp 2334–2346 | Cite as

Quantum MIMO Communication Scheme Based on Quantum Teleportation with Triplet States

  • Ronghua Shi
  • Jinjing Shi
  • Ying Guo
  • Xiaoqi Peng
  • Moon Ho Lee


A novel quantum MIMO communication scheme is proposed by generalizing the wireless communication technique to the quantum field. The MIMO quantum teleportation can be implemented with triplet states in order to enhance the capacity and fidelity of the quantum channel, in which an n-qubit sequence of quantum signals can be transmitted through the MIMO quantum channel by applying the diversity technique. The quantum noise filtering is involved before the quantum signals are outputted. The analysis and discussions demonstrate that the quantum MIMO teleportation can be performed securely with high capacity and fidelity.


MIMO Quantum communication Quantum teleportation Quantum channel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gisin, N., Thew, R.T.: Quantum communication. Nat. Photonics 1, 165–171 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    Gisin, N., Thew, R.T.: Quantum communication technology. Electron. Lett. 46(14), 1–3 (2010) Google Scholar
  3. 3.
    Lee, H., Lim, J., Yang, H.J.: Quantum direct communication with authentication. Phys. Rev. A 73, 042305 (2006) ADSMATHCrossRefGoogle Scholar
  4. 4.
    Chamoli, A., Bhandari, C.M.: Secure direct communication based on ping-pong protocol. Quantum Inf. Process. 8, 347–356 (2009) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Yang, Y.G., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Revisiting the security of secure direct communication based on ping-pong protocol. Quantum Inf. Process. 8, 347 (2009), Quantum Inf. Process., Online ISSN 1570-0755. doi: 10.1007/s11128-010-0199-5 CrossRefMathSciNetGoogle Scholar
  6. 6.
    Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    Kobayashi, H., Gall, F.L., Nishimura, H., Rötteler, M.: Perfect quantum network communication protocol based on classical network coding. Quantum Phys. 1(8), 1–9 (2009). arXiv:0902.1299v1 Google Scholar
  8. 8.
    Peev, M., Poppe, A., Maurhart, O., Lorünser, T., Länger, T., Pacher, C.: The SECOQC quantum key distribution network in Vienna. In: ECOC 2009, Vienna, Austria, pp. 20–24 (2009) Google Scholar
  9. 9.
    Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., Debuisschert, T., Diamanti, E., Dianati, M., Dynes, J.F., Fasel, S., Fossier, S., Fürst, M., Gautier, J.D., Gay, O., Gisin, N., Grangier, P., Happe, A., Hasani, Y., Hentschel, M., Hübel, H., Humer, G., Länger, T., Legré, M., Lieger, R., Lodewyck, J., Lorünser, T., Lütkenhaus, N., Marhold, A., Matyus, T., Maurhart, O., Monat, L., Nauerth, S., Page, J.B., Poppe, A., Querasser, E., Ribordy, G., Robyr, S., Salvail, L., Sharpe, A.W., Shields, A.J., Stucki, D., Suda, M., Tamas, C., Themel, T., Thew, R.T., Thoma, Y., Treiber, A., Trinkler, P., Brouri, R.T., Vannel, F., Walenta, N., Weier, H., Weinfurter, H., Wimberger, I., Yuan, Z.L., Zbinden, H., Zeilinger, A.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    Guo, Y., Shi, R.H., Zeng, G.H.: Secure networking quantum key distribution schemes with Greenberger-Horne-Zeilinger states. Phys. Scr. 81, 045006 (2010) ADSMATHCrossRefGoogle Scholar
  11. 11.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information, pp. 171–607. Cambridge University Press, Cambridge (2000) MATHGoogle Scholar
  12. 12.
    Modławska, J., Grudka, A.: Adaptive quantum teleportation. Phys. Rev. A 79, 064302 (2009) ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    SaiToh, A., Rahimi, R., Nakahara, M.: Economical (k,m)-threshold controlled quantum teleportation. Phys. Rev. A 79, 062313 (2009) ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Romano, R., Loock, P.V.: Teleportation is necessary for faithful quantum state transfer through noisy channels of maximal rank. Phys. Rev. A 82, 012334 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    Amri, M.A., Evers, J., Zubairy, M.S.: Quantum teleportation of four-dimensional qudits. Phys. Rev. A 82, 022329 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    Jafarkhani, H.: Space-Time Coding Theory and Practice, pp. 30–44. Cambridge University Press, Cambridge (2005) MATHCrossRefGoogle Scholar
  17. 17.
    Concha, J.I., Poor, H.V.: Multiaccess quantum channels. IEEE Trans. Inf. Theory 50(5), 725–747 (2004) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Zhao, S.M., Zheng, B.Y.: Quantum multi-user detection. In: IEEE Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005, vol. 2, pp. 371–374 (2005) CrossRefGoogle Scholar
  19. 19.
    Zhao, S.M., Zheng, B.Y.: Multi-user detection based on quantum square-root measurement. In: IEEE Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing, 2007, pp. 743–746 (2007) CrossRefGoogle Scholar
  20. 20.
    Gabay, M., Arnon, S.: Quantum key distribution by a free-space MIMO system. IEEE J. Lightwave Technol. 24(8), 3114–3120 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    Cui, G.Q., Lu, Y., Zeng, G.H.: A new scheme for quantum key distribution in free-space. In: Proceedings of the 15th Asia-Pacific Conference on Communications (APCC 2009), pp. 153, 637–640 (2009) Google Scholar
  22. 22.
    Ishizaka, S., Hiroshima, T.: Quantum teleportation scheme by selecting one of multiple output ports. Phys. Rev. A 79, 042306 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    Zhou, N.R., Wang, L.J., Ding, J., Gong, L.H., Zuo, X.W.: Novel quantum deterministic key distribution protocols with entanglement. Int. J. Theor. Phys. 49(9), 2035–2044 (2010) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Zhou, N.R., Wang, L.J., Ding, J., Gong, L.H.: Quantum deterministic key distribution protocols based on the authenticated entanglement channel. Phys. Scr. 81(4), 045009 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    Giorgi, G., Mataloni, P., Martini, F.D.: Frequency hopping in quantum interferometry: efficient up-down conversion for qubits and ebits. Phys. Rev. Lett. 90(2), 027902 (2003) ADSCrossRefGoogle Scholar
  26. 26.
    Takamura, Y., Usami, S., Usuda, T.S.: On attainment of the capacity of broadband quantum channel by wavelength division multiplexing. In: IEEE Proceedings of the 2010 International Symposium on Information Theory and its Applications (ISITA2010), pp. 1045–1049 (2010) CrossRefGoogle Scholar
  27. 27.
    Bouten, L., Handel, R.V., James, M.R.: An introduction to quantum filtering. SIAM J. Control Optim. 46(6), 2199–2241 (2007) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Wittmann, C., Elser, D., Andersen, U.L., Filip, R., Marek, P., Leuchs, G.: Quantum filtering of optical coherent states. Phys. Rev. A 78, 032315 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    Guo, Y., Lee, M.H.: Encryption-based networking quantum teleportation with triplet Greenberger-Horne-Zeilinger states. Int. J. Quantum Inf. 8(5), 765–778 (2010) MATHCrossRefGoogle Scholar
  30. 30.
    Barenco, A., Deutsch, D., Ekert, A.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74(20), 4083–4086 (1995) ADSCrossRefGoogle Scholar
  31. 31.
    Imre, S., Balázs, F.: Positive operation valued measurement based multi-user detection in DS-CDMA systems. Quantum Phys. 1(10), 1–10 (2002). arXiv:quant-ph/0201039 Google Scholar
  32. 32.
    Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006) ADSMATHCrossRefGoogle Scholar
  33. 33.
    Jung, E., Hwang, M.R., Ju, Y.H., Kim, M.S., Yoo, S.K., Kim, H., Park, D., Son, J.W., Tamaryan, S., Cha, S.K.: Greenberger-Horne-Zeilinger versus W states: quantum teleportation through noisy channels. Phys. Rev. A 78, 012312 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    Pirandola, S., Mancini, S., Braunstein, S.L., Vitali, D.: Minimal qubit code for a qubit in the phase-damping channel. Phys. Rev. A 77, 032309 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    Boyle, R., Thomas, R.: Computer Vision: A First Course, pp. 32–34. Blackwell Scientific, Oxford (1988) Google Scholar
  36. 36.
    Guo, Y., Zeng, G.H., Chen, Z.G.: Multiparty quantum secret sharing of quantum states with quantum registers. Chin. Phys. Lett. 24(4), 863–866 (2007) ADSCrossRefGoogle Scholar
  37. 37.
    Zeng, G.H.: Quantum Private Communication, pp. 131–150. Higher Education Press, Beijing (2009) Google Scholar
  38. 38.
    Huang, P., Lu, Y., Zeng, G.H.: A novel nondeterministic scheme for a nondestructive two-qubit controlled phase gate with linear optics. Phys. Lett. A 374, 527–530 (2010) ADSCrossRefGoogle Scholar
  39. 39.
    Preskill, J.: In: Quantum Information and Computation. Lecture Notes for Physics, vol. 229, pp. 159–160. Springer, Berlin (1998) Google Scholar
  40. 40.
    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs. Phys. Lett. A 359, 359–365 (2006) ADSMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Feng, M., Wu, L.N.: Extension to Shannon’s channel capacity-the theoretical proof. In: The 6th International Conference on Information, Communications and Signal Processing (ICICS 2007) (2007). doi: 10.1109/ICICS.2007.4449550 Google Scholar
  42. 42.
    Telatar, I., Emre, S.: Capacity of multi-antenna Gaussian channels. Eur. Trans. Telecommun. 10(6), 585–595 (1999) CrossRefGoogle Scholar
  43. 43.
    Guo, Y., Zeng, G.H.: Large-capability quantum key distribution with entangled qutrits. Opt. Commun. 281(14), 3938–3942 (2008) ADSCrossRefMathSciNetGoogle Scholar
  44. 44.
    Ma, R.L.: Quantum Cryptography Communication, pp. 13–15. Science Press, Beijing (2006) Google Scholar
  45. 45.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976) ADSMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ronghua Shi
    • 1
  • Jinjing Shi
    • 1
  • Ying Guo
    • 1
  • Xiaoqi Peng
    • 1
    • 2
  • Moon Ho Lee
    • 3
  1. 1.School of Information Science & EngineeringCentral South UniversityChangshaChina
  2. 2.Department of Information Science and EngineeringHunan First Normal UniversityChangshaChina
  3. 3.Institute of Information and CommunicationChonbuk National UniversityChonjuKorea

Personalised recommendations