Advertisement

International Journal of Theoretical Physics

, Volume 50, Issue 3, pp 682–688 | Cite as

Entanglement Dynamics of Ising Model with Dzialoshinskii-Moriya Interaction in an Inhomogeneous Magnetic Field

  • Jie Hu
  • Jian-Xing Fang
  • Dai-Guo He
Article

Abstract

This paper investigates the entanglement dynamics of two-spin Ising model with the Dzialoshinskii-Moriya (DM) interaction in an inhomogeneous magnetic field. The system is initially prepared in the Werner state.It is found that the phenomenon of the entanglement sudden death (ESD) appears during the evolution process. We also analyze in detail the effects of the DM interaction, the degree of inhomogeneous magnetic field and the purity of the initial state on the time of ESD. These effects indicate that one can control the entanglement of the system. It is helpful for quantum information processing.

Keywords

Entanglement sudden death DM interaction Inhomogeneous magnetic field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nielsen, M.A., Chuang, I.L: In: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) Google Scholar
  2. 2.
    Bennett, C.H., et al.: Phys. Rev. Lett. 70, 1895 (1993) zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Bennett, C.H., Wiesner, S.J.: Phys. Rev. Lett. 69, 2881 (1992) zbMATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Ekert, A.K.: Phys. Rev. Lett. 67, 66 (1991) CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Zheng, S.B.: Chin. Phys. 14, 533 (2005) CrossRefADSGoogle Scholar
  6. 6.
    Tan, J., Fang, M.F.: Chin. Phys. 15, 2514 (2006) CrossRefADSGoogle Scholar
  7. 7.
    Zhang, G.F., Yin, W., Liang, J.Q., Yan, Q.W.: Chin. Phys. 13, 988 (2004) CrossRefADSGoogle Scholar
  8. 8.
    Yu, T., Eberly, J.H.: Phys. Rev. Lett. 93, 140404 (2004) CrossRefADSGoogle Scholar
  9. 9.
    Almeida, M.P., de Melo, F., Hor-Meyll, M., et al.: Science 316, 579 (2007) CrossRefADSGoogle Scholar
  10. 10.
    Dzialoshinskii, I.: J. Phys. Chem. Solids 4, 241 (1958) CrossRefADSGoogle Scholar
  11. 11.
    Moriya, T.: Phys. Rev. Lett. 4, 228 (1960) CrossRefADSGoogle Scholar
  12. 12.
    Cai, Z., Lu, W.B.: Acta Phys. Sin. 57, 7267 (2008) (In Chinese) Google Scholar
  13. 13.
    Ma, X.S.: Opt. Commun. 218, 484 (2008) CrossRefADSGoogle Scholar
  14. 14.
    Qian, L., Fang, J.X.: Commum. Theor. Phys. 52, 817 (2009) zbMATHCrossRefADSGoogle Scholar
  15. 15.
    Ma, X.S.: Commum. Theor. Phys. 52, 825 (2009) zbMATHCrossRefADSGoogle Scholar
  16. 16.
    Qin, M., Xu, S.L., Tao, Y.J., Tian, D.P.: Chin. Phys. B 17, 2800 (2008) CrossRefADSGoogle Scholar
  17. 17.
    Zhang, G.F.: Phys. Rev. A 75, 034304 (2007) CrossRefADSGoogle Scholar
  18. 18.
    Huang, L.Y., Fang, M.F.: Chin. Phys. B 17, 2339 (2008) CrossRefADSGoogle Scholar
  19. 19.
    Zheng, Q., et al.: Chin. Phys. B 18, 3210 (2009) CrossRefADSGoogle Scholar
  20. 20.
    Wu, Y.Z.: Opt. Commun. 283, 1569 (2009) CrossRefADSGoogle Scholar
  21. 21.
    Zeng, H.F.: Chin. Phys. B 18, 3265 (2009) CrossRefADSGoogle Scholar
  22. 22.
    Wooters, W.K.: Phys. Rev. Lett. 80, 2245 (1998) CrossRefADSGoogle Scholar
  23. 23.
    O’Connor, K.M., Wooters, W.K.: Phys. Rev. A 63, 052302 (2001) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Physical Science and TechnologySoochow UniversitySuzhouChina

Personalised recommendations