Advertisement

International Journal of Theoretical Physics

, Volume 50, Issue 4, pp 1282–1295 | Cite as

Unified (r,s)-Relative Entropy

  • Jiamei Wang
  • Junde Wu
  • Cho Minhyung
Article

Abstract

In this paper, we introduce and study unified (r,s)-relative entropy and quantum unified (r,s)-relative entropy, in particular, our main results about quantum unified (r,s)-relative entropy are established on the infinite dimensional separable complex Hilbert spaces.

Keywords

Hilbert space Unified (r,s)-relative entropy State 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rathie, P.N.: Unified (r,s)-entropy and its bivariate measures. Inf. Sci. 54, 23–39 (1991) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Hu, X.H., Ye, Z.X.: Generalized quantum entropy. J. Math. Phys. 47, 023502-1–023502-7 (2006) MathSciNetADSGoogle Scholar
  3. 3.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) MATHGoogle Scholar
  4. 4.
    Ohya, M., Petz, D.: Quantum Entropy and its Use. Springer, Berlin (1991) Google Scholar
  5. 5.
    Furuichi, S., Yanagi, K., Kuriyama, K.: Fundamental properties of Tsallis relative entropy. J. Math. Phys. 45, 4868–4877 (2004) MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Furuichi, S.: A note on a parametrically extended entanglement-measure due to Tsallis relative entropy. Information 9, 837–844 (2006) MathSciNetGoogle Scholar
  7. 7.
    Taneja, I.J., Pardo, L., Morales, D., Menéndez, M.L.: On generalized information and divergence measures and their applications: a brief review. Qüestiió 13, 47–73 (1989) MATHGoogle Scholar
  8. 8.
    Douglas, R.G.: On majorization and range inclusion of operators in Hilbert space. Proc. Am. Math. Soc. 17, 413–416 (1966) MATHCrossRefGoogle Scholar
  9. 9.
    Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221–260 (1978) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Lindblad, G.: Expectations and entropy inequalities for finite quantum systems. Commun. Math. Phys. 39, 111–119 (1974) MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Lindblad, G.: Completely positive maps and entropy inequalities. Commun. Math. Phys. 40, 147–151 (1975) MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Ruskai, M.B.: Inequalities for quantum entropy: A review with conditions for equality. J. Math. Phys. 43, 4358–4375 (2002) MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Lieb, E.H.: Convex trace functions and the Wigner-Yanase-Dyson conjecture. Adv. Math. 11, 267–288 (1973) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Ruskai, M.B., Stillinger, F.M.: Convexity inequalities for estimating free energy and relative entropy. J. Phys. A 23, 2421–2437 (1990) MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsAnhui University of TechnologyMa’anshanPeople’s Republic of China
  2. 2.Department of MathematicsZhejiang UniversityHangzhouPeople’s Republic of China
  3. 3.Department of Applied MathematicsKumoh National Institute of TechnologyKyungbukKorea

Personalised recommendations