International Journal of Theoretical Physics

, Volume 50, Issue 2, pp 571–580 | Cite as

Product Łukasiewicz Quantum Logic

  • Cesarino Bertini
  • Roberto Leporini


The theory of logical gates in quantum computation has suggested new forms of quantum logic, called quantum computational logics. The basic semantic idea is the following: the meaning of a sentence is identified with a density operator (called qumix). In this framework, any sentence α of the language gives rise to a quantum circuit that transforms the qumix associated to the atomic subformulas of α into the qumix associated to α. In this paper we enrich the language by adding a new connective which expresses truncated sum.


Quantum computation Quantum logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936) CrossRefGoogle Scholar
  2. 2.
    Dalla Chiara, M.L., Giuntini, R.: Quantum logics. In: Gabbay, G., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. VI, pp. 129–228. Kluwer, Dordrecht (2002) Google Scholar
  3. 3.
    Dalla Chiara, M.L., Giuntini, R., Leporini, R.: Logics from quantum computation. Int. J. Quantum Inf. 3, 293–337 (2005) MATHCrossRefGoogle Scholar
  4. 4.
    Dalla Chiara, M.L., Giuntini, R., Leporini, R.: Reversibility and irreversibility in quantum computation and in quantum computational logics. In: Algebraic and Proof-Theoretic Aspects of Non-classical Logics. LNAI, vol. 4460, pp. 84–106. Springer, Berlin (2006) CrossRefGoogle Scholar
  5. 5.
    Gudder, S.: Quantum computational logic. Int. J. Theor. Phys. 42, 39–47 (2003) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Petri, C.A.: Grundsätzliches zur Beschreibung diskreter Prozesse. In: Proceedings of the 3rd Colloquium über Automatentheorie, Hannover, 1965, pp. 121–140. Birkhäuser, Basel (1967). English version: Fundamentals of the Representation of Discrete Processes. ISF Report 82.04 (1982). Translated by H.J. Genrich and P.S. Thiagarajan Google Scholar
  7. 7.
    Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.) Automata, Languages and Programming, pp. 632–644. Springer, Berlin (1980). Also available as TechnicalMemo MIT/LCS/TM-151, MIT Laboratory for Computer Science, February (1980) CrossRefGoogle Scholar
  8. 8.
    Zawirski, Z.: Relation of many-valued logic to probability calculus (in Polish, original title: Stosunek logiki wielowartościowej do rachunku prawdopodobieństwa), Poznańskie Towarzystwo Przyjaciół Nauk (1934) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dipartimento di Matematica, Statistica, Informatica e ApplicazioniUniversità di BergamoBergamoItaly

Personalised recommendations