Advertisement

International Journal of Theoretical Physics

, Volume 50, Issue 1, pp 260–268 | Cite as

Entanglement and Geometric Phase for Two-Particle System in Nuclear Magnetic Resonance

  • Wenjuan Yang
  • Weijia Zhang
  • Hongshan Tang
  • Z. S. Wang
Article

Abstract

Evolution of entangled degree with geometric phases and initial conditions are investigated for two-particle system in nuclear magnetic resonance under cyclic evolution. We find that a perfect entanglement may be obtained by controlling the geometric phases and initial conditions, which is helpful to implement a universal entangling geometric quantum gate in nuclear magnetic resonance.

Keywords

Entangled degree Geometric phase Entangling geometric quantum gate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935) MATHCrossRefADSGoogle Scholar
  2. 2.
    Schrödinger, E.: Proc. Camb. Philos. Soc. 31, 555 (1935) CrossRefADSGoogle Scholar
  3. 3.
    Schrödinger, E.: Proc. Camb. Philos. Soc. 32, 446 (1936) CrossRefADSGoogle Scholar
  4. 4.
    Bell, J.S.: Physica (N.Y.) 1, 195 (1964) Google Scholar
  5. 5.
    Ghirardi, G.C., Marinatto, L.: Fortschr. Phys. 51, 379 (2003) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ghirardi, G.C., Marinatto, L.: Phys. Rev. A 70, 012109 (2004) CrossRefADSGoogle Scholar
  7. 7.
    Peres, A.: Phys. Rev. Lett. 77, 1413 (1996) MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Horodecki, M., Horodecki, P., Horodecki, R.: Phys. Lett. A 223, 1 (1996) MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Bennett, C.H., et al.: Phys. Rev. Lett. 70, 1895 (1993) MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Cochrane, P.T., Milburn, G.J.: Phys. Rev. 64, 062312 (2001) CrossRefGoogle Scholar
  11. 11.
    Jiang, D.-Y., Wu, R., Li, S.S., Wang, Z.S.: Int. J. Theor. Phys. 48, 2297 (2009) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991) MATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Murao, M., et al.: Phys. Rev. A 59, 156 (1999) CrossRefADSGoogle Scholar
  14. 14.
    Berry, M.: Proc. R. Soc. A 392, 45 (1984) MATHCrossRefADSGoogle Scholar
  15. 15.
    Wang, Z.S., et al.: Europhys. Lett. 74, 958 (2006) CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Wang, Z.S., et al.: Phys. Rev. A 75, 024102 (2007) CrossRefADSGoogle Scholar
  17. 17.
    Wang, Z.S.: Int. J. Theor. Phys. 48, 2353 (2009) MATHCrossRefADSGoogle Scholar
  18. 18.
    Wang, Z.S., Wu, C., Feng, X.-L., Kwek, L.C., Lai, C.H., Oh, C.H., Vedral, V.: Phys. Rev. A 76, 044303 (2007) CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Wang, Z.S.: Phys. Rev. A 79, 024304 (2009) CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Wang, Z.S., Liu, G.Q., Ji, Y.H.: Phys. Rev. A 79, 054301 (2009) CrossRefADSGoogle Scholar
  21. 21.
    Duan, L.M., Cirac, J.I., Zoller, P.: Science 292, 1695 (2001) CrossRefADSGoogle Scholar
  22. 22.
    Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998) CrossRefADSGoogle Scholar
  23. 23.
    Wang, Z.S., Kwek, L.C., Lai, C.H., Oh, C.H.: Eur. Phys. J. D 33, 285 (2005) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Wenjuan Yang
    • 1
  • Weijia Zhang
    • 1
  • Hongshan Tang
    • 2
  • Z. S. Wang
    • 1
    • 3
  1. 1.College of Physics and Communication ElectronicsJiangxi Normal UniversityNanchangPeople’s Republic of China
  2. 2.Jiangxi Journalism and Publication CollegeNanchangPeople’s Republic of China
  3. 3.Key Laboratory of optoelectronic and Telecommunication of JiangxiNanchangPeople’s Republic of China

Personalised recommendations