Advertisement

International Journal of Theoretical Physics

, Volume 50, Issue 1, pp 129–139 | Cite as

Quasi-normal Modes of AdS 5 Black Hole at \(\mathcal{N}=2\) Supergravity

  • J. Sadeghi
  • A. Chatrabhuti
  • B. Pourhassan
Article

Abstract

In this paper we consider the AdS 5 black hole at the \(\mathcal{N}=2\) supergravity background. By using the AdS/CFT correspondence we discuss about the quasi-normal modes of the scalar field in the black hole, which is dual of the scalar glueballs spectrum on the boundary. We obtain phase transition conditions from stable to unstable theory, which interpreted as confinement and deconfinement states in the QCD. We obtain the specific heat in terms of the temperature and charge of black hole, we find the temperature where the black hole is stable. Also we rewrite the equation of motion in the Schrödinger form and discuss the effective potential.

Keywords

AdS/CFT correspondence \(\mathcal{N}=2\) Supergravity Black holes Quasi-normal modes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998) MATHMathSciNetADSGoogle Scholar
  2. 2.
    Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998) MATHMathSciNetGoogle Scholar
  3. 3.
    Schwart, J.H.: Introduction to M theory and AdS/CFT duality. In: Lecture Notes in Physics, vol. 525, pp. 1–21. Springer, Berlin (1999) Google Scholar
  4. 4.
    Petersen, J.L.: Introduction to the Maldacena conjecture on AdS/CFT. Int. J. Mod. Phys. A 14, 3597 (1999) MATHCrossRefADSGoogle Scholar
  5. 5.
    Nastase, H.: Introduction to AdS-CFT. arXiv:0712.0689v2 [hep-th] (2007)
  6. 6.
    Klebanov, I.R.: TASI lectures: introduction to the AdS/CFT correspondence. arXiv:hep-th/0009139 (2009)
  7. 7.
    Gaiotto, D., Maldacena, J.: The gravity duals of \(\mathcal{N}=2\) superconformal field theories. arXiv:0904.4466 [hep-th]
  8. 8.
    Gaiotto, D.: N=2 dualities. arXiv:0904.2715 [hep-th] (2009)
  9. 9.
    Behrndt, K., Chamseddine, A.H., Sabra, W.A.: BPS black holes in \({\mathcal{N}}=2\) five dimensional AdS supergravity. Phys. Lett. B 442, 97 (1998) MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Behrndt, K., Cvetic, M., Sabra, W.A.: Non-extreme black holes of five dimensional \({\mathcal{N}}=2\) AdS supergravity. Nucl. Phys. B 553, 317 (1999) MATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Sadeghi, J., Pourhassan, B.: Drag force of moving quark at the \({\mathcal{N}}=2\) supergravity. J. High Energy Phys. 12, 026 (2008). arXiv:0809.2668 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Sadeghi, J., Setare, M.R., Pourhassan, B., Hashmatian, S.: Drag force of moving quark in STU background. Eur. Phys. J. C 61, 527 (2009). arXiv:0901.0217 [hep-th] CrossRefADSGoogle Scholar
  13. 13.
    Sadeghi, J., Setare, M.R., Pourhassan, B.: Drag force with different charges in STU background and AdS/CFT. J. Phys., G, Nucl. Part. Phys. 36, 115005 (2009). arXiv:0905.1466 [hep-th] CrossRefADSGoogle Scholar
  14. 14.
    Hoyos-Badajoz, C.: Drag and jet quenching of heavy quarks in a strongly coupled N=2 plasma. J. High Energy Phys. 0909, 068 (2009). arXiv:0907.5036v3 [hep-th] CrossRefADSGoogle Scholar
  15. 15.
    Freedman, D.Z., Gubser, S.S., Pilch, K., Warner, N.P.: Renormalization group flows from holography supersymmetry and a c-theorem. Adv. Theor. Math. Phys. 3, 363 (1999). arXiv:hep-th/9904017 MATHMathSciNetGoogle Scholar
  16. 16.
    Pilch, K., Warner, N.P.: N=2 supersymmetric RG flows and the IIB dilaton. Nucl. Phys. B 594, 209 (2001). arXiv:hep-th/0004063 MATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Buchel, A., Peet, A.W., Polchinski, J.: Gauge dual and noncommutative extension of an N=2 supergravity solution. Phys. Rev. D 63, 044009 (2001). arXiv:hep-th/0008076 CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Evans, N.J., Johnson, C.V., Petrini, M.: The enhancon and N=2 gauge theory/gravity RG flows. J. High Energy Phys. 0010, 022 (2000). arXiv:hep-th/0008081 CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Gaiotto, D.: Surface operators in N=2 4d gauge theories. [arXiv:0911.1316 [hep-th]] (2009)
  20. 20.
    Gaiotto, D., Maldacena, J.: The gravity duals of N=2 superconformal field theories. [arXiv:0904.4466 [hep-th]] (2009)
  21. 21.
    Gaiotto, D.: N=2 dualities. [arXiv:0904.2715 [hep-th]] (2009)
  22. 22.
    Behrndt, K., Chamseddine, A.H., Sabra, W.A.: BPS black holes in N=2 five dimensional AdS supergravity. Phys. Lett. B 442, 97 (1998) MATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Behrndt, K., Cvetic, M., Sabra, W.A.: Non-extreme black holes of five-dimensional N=2 AdS supergravity. Nucl. Phys. B 553, 317 (1999) MATHCrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Berti, E., Cardoso, V., Starinets, A.O.: Class. Quantum Gravity 26, 163001 (2009). arXiv:0905.2975 [gr-qc] CrossRefMathSciNetGoogle Scholar
  25. 25.
    Horowitz, G.T., Hubeny, V.E.: Phys. Rev. D 62, 024027 (2000). [arXiv:hep-th/9909056] CrossRefMathSciNetADSGoogle Scholar
  26. 26.
    Berti, E., Cardoso, V., Pani, P.: Phys. Rev. D 79, 101501 (2009). arXiv:0903.5311 [gr-qc] CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Kokkotas, K.D., Schmidt, B.G.: Living Rev. Rel. 2, 2 (1999). arXiv:gr-qc/9909058 MathSciNetGoogle Scholar
  28. 28.
    Nollert, H.P.: Class. Quantum Gravity 16, R159 (1999) MATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Wang, B., Molina, C., Abdalla, E.: Phys. Rev. D 63, 084001 (2001). [arXiv:hep-th/0005143] CrossRefADSGoogle Scholar
  30. 30.
    Cardoso, V., Lemos, J.P.S.: Phys. Rev. D 63, 124015 (2001). [arXiv:gr-qc/0101052] CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Cardoso, V., Lemos, J.P.S.: Phys. Rev. D 64, 084017 (2001). [arXiv:gr-qc/0105103] CrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Starinets, A.O.: Phys. Rev. D 66, 124013 (2002). [arXiv:hep-th/0207133] CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Nunez, A., Starinets, A.O.: Phys. Rev. D 67, 124013 (2003). [arXiv:hep-th/0302026] CrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Kovtun, P.K., Starinets, A.O.: Phys. Rev. D 72, 086009 (2005). [arXiv:hep-th/0506184] CrossRefADSGoogle Scholar
  35. 35.
    Maeda, K., Natsuume, M., Okamura, T.: Phys. Rev. D 72, 086012 (2005). [arXiv:hep-th/0509079] CrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Siopsis, G.: Nucl. Phys. B 715, 483 (2005). [arXiv:hep-th/0407157] MATHCrossRefMathSciNetADSGoogle Scholar
  37. 37.
    Miranda, A.S., Zanchin, V.T.: Phys. Rev. D 73, 064034 (2006). [arXiv:gr-qc/0510066] CrossRefMathSciNetADSGoogle Scholar
  38. 38.
    Zhang, Y., Jing, J.L.: Int. J. Mod. Phys. D 15, 905 (2006) MATHCrossRefMathSciNetADSGoogle Scholar
  39. 39.
    Hoyos-Badajoz, C., Landsteiner, K., Montero, S.: J. High Energy Phys. 0704, 031 (2007). [arXiv:hep-th/0612169] CrossRefADSGoogle Scholar
  40. 40.
    Miranda, A.S., Zanchin, V.T.: Int. J. Mod. Phys. D 16, 421 (2007) MATHCrossRefADSGoogle Scholar
  41. 41.
    Amado, I., Hoyos-Badajoz, C.: J. High Energy Phys. 0809, 118 (2008). [arXiv:0807.2337 [hep-th]] CrossRefADSGoogle Scholar
  42. 42.
    Miranda, A.S., Ballon-Bayona, C.A., Boschi-Filho, H., Braga, N.R.F.: Black-hole quasinormal modes and scalar glueballs in a finite-temperature AdS/QCD model. arXiv:0909.1790 [hep-th]
  43. 43.
    Karch, A., Katz, E., Son, D.T., Stephanov, M.A.: Phys. Rev. D 74, 015005 (2006). [arXiv:hep-ph/0602229] CrossRefADSGoogle Scholar
  44. 44.
    Colangelo, P., De Fazio, F., Jugeau, F., Nicotri, S.: Phys. Lett. B 652, 73 (2007). [arXiv:hep-ph/0703316] CrossRefADSGoogle Scholar
  45. 45.
    Colangelo, P., De Fazio, F., Giannuzzi, F., Jugeau, F., Nicotri, S.: Phys. Rev. D 78, 055009 (2008). [arXiv:0807.1054 [hep-ph]] CrossRefADSGoogle Scholar
  46. 46.
    Herzog, C.P.: Phys. Rev. Lett. 98, 091601 (2007). [arXiv:hep-th/0608151] CrossRefADSGoogle Scholar
  47. 47.
    Kajantie, K., Tahkokallio, T., Yee, J.T.: J. High Energy Phys. 0701, 019 (2007). [arXiv:hep-ph/0609254] CrossRefMathSciNetADSGoogle Scholar
  48. 48.
    Ballon Bayona, C.A., Boschi-Filho, H., Braga, N.R.F., Pando Zayas, L.A.: Phys. Rev. D 77, 046002 (2008). [arXiv:0705.1529 [hep-th]] CrossRefADSGoogle Scholar
  49. 49.
    Hawking, S.W., Page, D.N.: Commun. Math. Phys. 87, 577 (1983) CrossRefMathSciNetADSGoogle Scholar
  50. 50.
    Son, D.T., Starinets, A.O.: Hydrodynamics of R-charged black holes. J. High Energy Phys. 0603, 052 (2006) CrossRefMathSciNetADSGoogle Scholar
  51. 51.
    Horowitz, G.T., Hubeny, V.E.: Quasinormal modes of AdS black holes and the approach to thermal equilibrium. Phys. Rev. D 62, 024027 (2000). [arXiv:hep-th/9909056] CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Sciences Faculty, Department of PhysicsMazandaran UniversityBabolsarIran
  2. 2.Theoretical High-energy Physics and Cosmology group, Department of Physics, Faculty of ScienceChulalongkorn UniversityBangkokThailand

Personalised recommendations