International Journal of Theoretical Physics

, Volume 49, Issue 9, pp 2230–2245 | Cite as

The Transformation of Irreducible Tensor Operators Under Spherical Functions



The irreducible tensor operators and their tensor products employing Racah algebra are studied. Transformation procedure of the coordinate system operators act on are introduced. The rotation matrices and their parametrization by the spherical coordinates of vector in the fixed and rotated coordinate systems are determined. A new way of calculation of the irreducible coupled tensor product matrix elements is suggested. As an example, the proposed technique is applied for the matrix element construction for two electrons in a field of a fixed nucleus.


Irreducible tensor operator Rotation matrix Spherical function Matrix element 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Condon, E.U., Shortley, G.H.: The Theory of Atomic Spectra. Cambridge Univ. Press, Cambridge (1935) Google Scholar
  2. 2.
    Jucys, A.P., Savukynas, A.J.: Mathematical Foundations of the Atomic Theory. Mokslas Publishers, Vilnius (1973) (in Russian) Google Scholar
  3. 3.
    Gaigalas, G., Rudzikas, Z., Fischer, Ch.F.: An efficient approach for spin-angular integrations in atomic structure calculations. J. Phys. B, At. Mol. Opt. Phys. 30, 3747–3771 (1997) CrossRefADSGoogle Scholar
  4. 4.
    Grant, I.P.: Angular coefficients in large-scale atomic structure calculations. Mol. Phys. 102, 1193–1200 (2004) CrossRefADSGoogle Scholar
  5. 5.
    Abbadi, M.A., Bani-Hani, N.M., Khalifeh, J.M.: A variational wave function for 2p2-orbitals in atomic negative ions. Int. J. Theor. Phys. 40, 2053–2066 (2001) MATHCrossRefGoogle Scholar
  6. 6.
    Fano, U., Racah, G.: Irreducible Tensor Sets. Academic Press, New York (1959) Google Scholar
  7. 7.
    Racah, G.: Theory of complex spectra, II. Phys. Rev. 62, 438–462 (1942) CrossRefADSGoogle Scholar
  8. 8.
    Rudzikas, Z.B., Kaniauskas, J.M.: Generalized spherical functions in the theory of many-electron atoms. Int. J. Quant. Chem. 10, 837–852 (1976) CrossRefGoogle Scholar
  9. 9.
    Bhatia, A.K., Temkin, A.: Symmetric Euler-angle decomposition of the two-electron fixed-nucleus problem. Rev. Mod. Phys. 36, 1050–1064 (1964) MATHCrossRefADSGoogle Scholar
  10. 10.
    Jucys, A.P., Bandzaitis, A.A.: Theory of angular momentum in quantum mechanics, 2nd edn, Mokslas Publishers, Vilnius (1977) (in Russian) Google Scholar
  11. 11.
    Gel’fand, I.M., Minlos, R.A., Shapiro, Z.Ya.: Representations of the rotation and Lorentz groups and their applications. Pergamon, Oxford (1963) MATHGoogle Scholar
  12. 12.
    Pinchon, D., Hoggan, R.E.: Rotation matrices for real spherical harmonics. J. Math. Phys. 40, 1597–1610 (2007) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Theoretical Physics and AstronomyVilnius UniversityVilniusLithuania

Personalised recommendations