Advertisement

International Journal of Theoretical Physics

, Volume 49, Issue 9, pp 2113–2120 | Cite as

Scale Transformation, Modified Gravity, and Brans-Dicke Theory

  • F. Darabi
Article
  • 45 Downloads

Abstract

A model of Einstein-Hilbert action subject to the scale transformation is studied. By introducing a dilaton field as a means of scale transformation a new action is obtained whose Einstein field equations are consistent with traceless matter with non-vanishing modified terms together with dynamical cosmological and gravitational coupling terms. The obtained modified Einstein equations are neither those in f(R) metric formalism nor the ones in f(ℛ) Palatini formalism, whereas the modified source terms are formally equivalent to those of \(f({\mathcal{R}})=\frac{1}{2}{\mathcal{R}}^{2}\) gravity in Palatini formalism. The correspondence between the present model, the modified gravity theory, and Brans-Dicke theory with \(\omega=-\frac{3}{2}\) is explicitly shown, provided the dilaton field is condensated to its vacuum state.

Keywords

Scale transformation Modified gravity Brans-Dicke theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dirac, P.A.M.: Nature 139, 323 (1937) MATHCrossRefADSGoogle Scholar
  2. 2.
    Dirac, P.A.M.: Proc. R. Soc. Lond. A 165, 198 (1938) ADSGoogle Scholar
  3. 3.
    Dirac, P.A.M.: Proc. R. Soc. Lond. A 365, 198 (1979) MathSciNetGoogle Scholar
  4. 4.
    Bekenstein, J.D.: Found. Phys. 16, 409 (1986) CrossRefADSGoogle Scholar
  5. 5.
    Damour, T., Gibbons, G.W., Gundlach, C.: Phys. Rev. Lett. 64, 123 (1990) CrossRefADSGoogle Scholar
  6. 6.
    Bertolami, O.: Nuovo Cimento 93, 36 (1986) CrossRefGoogle Scholar
  7. 7.
    Bisabr, Y., Salehi, H.: Class. Quantum Gravity 19, 2369 (2002) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bisabr, Y.: Int. J. Theor. Phys. 43, 2137 (2004) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bisabr, Y.: Int. J. Theor. Phys. 44, 283 (2005) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bisabr, Y.: Gen. Relativ. Gravit. 42, 1211 (2010) MATHCrossRefADSGoogle Scholar
  11. 11.
    Nojiri, S., Odintsov, S.D.: Phys. Rev. D 68, 123512 (2003) CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Allemandi, G., Borowiec, A., Francaviglia, M., Odintsov, S.D.: Phys. Rev. D 72, 063505 (2005) CrossRefADSGoogle Scholar
  13. 13.
    Capozziello, S., Nojiri, S., Odintsov, S.D.: Phys. Lett. B 634, 93 (2006) CrossRefADSGoogle Scholar
  14. 14.
    Nojiri, S., Odintsov, S.D.: Int. J. Geom. Methods Mod. Phys. 4, 115 (2007) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Sotiriou, T.P.: f(R) theories of gravity. arXiv:0805.1726v1
  16. 16.
    Setare, M.R.: Phys. Lett. B 644, 99 (2007) CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Setare, M.R.: Int. J. Mod. Phys. D 17, 2219 (2008) MATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Setare, M.R.: Astrophys. Space Sci. 326, 27 (2010) MATHCrossRefADSGoogle Scholar
  19. 19.
    Ferraris, M., Francaviglia, M., Volovich, I.: gr-qc/9303007 (1992)

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PhysicsAzerbaijan University of Tarbiat MoallemTabrizIran

Personalised recommendations