Advertisement

International Journal of Theoretical Physics

, Volume 49, Issue 8, pp 1759–1767 | Cite as

Spinor Field at the Phase Transition Point of Reissner-Nordström de Sitter Space

  • Yan Lyu
  • Li-Qing Zhang
  • Wei Zheng
  • Qing-Chao Pan
Article

Abstract

The radial parts of Dirac equation between the outer black hole horizon and the cosmological horizon are solved in Reissner-Nordström de Sitter (RNdS) space when it is at the phase transition point. We use an accurate polynomial approximation to approximate the modified tortoise coordinate \(\hat{r}_{*}\) in order to get the inverse function \(r=r(\hat{r}_{*})\) and the potential \(V(\hat{r}_{*})\). Then we use a quantum mechanical method to solve the wave equation numerically. We consider two cases, one is when the two horizons are lying close to each other, the other is when the two horizons are widely separated.

Keywords

Dirac equation The phase transition point Reissner-Nordström de Sitter space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chandrasekhar, S.: Proc. R. Soc. Lond. A 349, 571 (1976) CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Page, D.N.: Phys. Rev. D 14, 1509 (1976) CrossRefADSGoogle Scholar
  3. 3.
    Khanal, U., Panchapakesan, N.: Phys. Rev. D 24, 829 (1980) CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Liu, L., et al.: Acta Phys. Sci. 29, 1617 (1980) ADSGoogle Scholar
  5. 5.
    Zhao, Z., et al.: Acta Astrophys. Sin. 1, 141 (1981) ADSGoogle Scholar
  6. 6.
    Khanal, U.: Phys. Rev. D 32, 879 (1984) CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Chakrabarti, S.K.: Proc. R. Soc. Lond. A 391, 27 (1984) CrossRefADSGoogle Scholar
  8. 8.
    Semiz, I.: Phys. Rev. D 46, 5414 (1992) CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Jin, W.M.: Class. Quantum Gravity 15, 3163 (1998) MATHCrossRefADSGoogle Scholar
  10. 10.
    Mukhopadhyay, B., Chakrabarti, S.K.: Class. Quantum Gravity 16, 3165 (1999) MATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Mukhopadhyay, B., Chakrabarti, S.K.: Nucl. Phys. B 582, 627 (2000) MATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Chakrabarti, S.K., Mukhopadhyay, B.: Nuovo Cimento B 115, 885 (2000) MathSciNetGoogle Scholar
  13. 13.
    Chakrabarti, S.K., Mukhopadhyay, B.: Mon. Not. R. Astron. Soc. 317, 979 (2000) CrossRefADSGoogle Scholar
  14. 14.
    Lyu, Y., Gui, Y.X.: Nuovo Cimento B 119, 453 (2004) MathSciNetADSGoogle Scholar
  15. 15.
    Lyu, Y., Gui, Y.X.: Phys. Scr. 75, 152 (2007) MATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Lyu, Y., Gui, Y.X.: Int. J. Theor. Phys. 46, 1596 (2007) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lyu, Y., et al.: Mod. Phys. Lett. A 24, 2433 (2009) MATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Newman, E., Penrose, R.: J. Math. Phys. 7, 863 (1966) CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Goldberg, J.N., et al.: J. Math. Phys. 8, 2155 (1967) MATHCrossRefADSGoogle Scholar
  20. 20.
    Guo, G.H., et al.: Chin. Phys. Lett. 22, 820 (2005) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yan Lyu
    • 1
  • Li-Qing Zhang
    • 1
  • Wei Zheng
    • 1
  • Qing-Chao Pan
    • 1
  1. 1.College of Physics Science and TechnologyShenyang Normal UniversityShenyangPeople’s Republic of China

Personalised recommendations