Advertisement

International Journal of Theoretical Physics

, Volume 49, Issue 5, pp 1073–1081 | Cite as

Quantum Fisher Information in the Generalized One-axis Twisting Model

  • Wan-Fang Liu
  • Heng-Na Xiong
  • Jian Ma
  • Xiaoguang Wang
Article

Abstract

We investigate the quantum Fisher information (QFI) of symmetric states for spin-s particles. We derive the maximal QFI, and find that quantum spin correlations are essential ingredients of the maximal QFI. We make applications to the generalized one-axis twisting model. The results show that the redistributions of uncertainties on the basis of the quantum correlations in the multiqubit system are useful for sub-shot-noise phase sensitivity. Furthermore, for high-spin (s>1/2) composite systems, we find a sufficient criterion for entanglement.

Keywords

Quantum Fisher information One-axis twisting model Heisenberg limit Entanglement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993) MATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Bennett, C.H., Wiesner, S.J.: Phys. Rev. Lett. 69, 2881 (1992) MATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991) MATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Phys. Rev. A 59, 156 (1999) CrossRefADSGoogle Scholar
  5. 5.
    Pezzé, L., Smerzi, A.: Phys. Rev. Lett. 102, 100401 (2009) CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Braunstein, S.L., Caves, C.M.: Phys. Rev. Lett. 72, 3439 (1994) MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, San Diego (1976), Chap. VIII Google Scholar
  8. 8.
    Holevo, A.S.: Probabilistic and Statistical Aspect of Quantum Theory. North-Holland, Amsterdam (1982) Google Scholar
  9. 9.
    Wootters, W.K.: Phys. Rev. D 23, 357 (1981) CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Wineland, D.J., Bollinger, J.J., Itano, W.M., Moore, F.L., Heinzen, D.J.: Phys. Rev. A 46, R6797 (1992) CrossRefADSGoogle Scholar
  11. 11.
    Giovannetti, V., Lloyd, S., Maccone, L.: Science 306, 1330 (2004) CrossRefADSGoogle Scholar
  12. 12.
    Luo, S.L.: Lett. Math. Phys. 53, 243 (2000) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Luati, A.: Ann. Stat. 32, 1770 (2004) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Yan, D., Wang, X., Wu, L.: Chin. Phys. Lett. 22, 521 (2005) CrossRefADSGoogle Scholar
  15. 15.
    Yan, D., Wang, X., Song, L., Zong, Z.G.: Cent. Eur. J. Phys. 5, 367 (2007) Google Scholar
  16. 16.
    Wang, X., Sanders, B.C.: Phys. Rev. A 68, 012101 (2003) CrossRefADSGoogle Scholar
  17. 17.
    Ma, J., Wang, X.: Phys. Rev. A 80, 012318 (2009) CrossRefADSGoogle Scholar
  18. 18.
    Vidal, J., Palacios, G., Mosseri, R.: Phys. Rev. A 69, 022107 (2004) CrossRefADSGoogle Scholar
  19. 19.
    Franchini, F., Its, A.R., Korepin, V.E.: J. Phys. A: Math. Theor. 41, 025302 (2008) CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Bunder, J.E., McKenzie, R.H.: Phys. Rev. B 60, 344 (1998) CrossRefADSGoogle Scholar
  21. 21.
    Yuan, Z.-G., Zhang, P., Li, S.-S.: Phys. Rev. A 76, 042118 (2007) CrossRefADSGoogle Scholar
  22. 22.
    Kitagawa, M., Ueda, M.: Phys. Rev. A 47, 5138 (1993) CrossRefADSGoogle Scholar
  23. 23.
    Yang, Y., Liu, W.-F., Sun, Z., Wang, X.: Phys. Rev. A 79, 054104 (2009) CrossRefADSGoogle Scholar
  24. 24.
    Wang, X., Mømer, K.: Eur. Phys. J. D 18, 385 (2002) MATHADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Wan-Fang Liu
    • 1
    • 2
  • Heng-Na Xiong
    • 2
  • Jian Ma
    • 2
  • Xiaoguang Wang
    • 2
  1. 1.School of Physics and Electric EngineeringAnqing Teachers CollegeAnqingChina
  2. 2.Zhejiang Institute of Modern Physics, Department of PhysicsZhejiang UniversityHangzhouChina

Personalised recommendations