Advertisement

International Journal of Theoretical Physics

, Volume 49, Issue 5, pp 1065–1072 | Cite as

Entangled Husimi Distribution and Complex Wavelet Transformation

  • Li-Yun Hu
  • Hong-Yi Fan
Article

Abstract

Similar in spirit to the preceding work (Int. J. Theor. Phys. 48:1539, 2009) where the relationship between wavelet transformation and Husimi distribution function is revealed, we study this kind of relationship to the entangled case. We find that the optical complex wavelet transformation can be used to study the entangled Husimi distribution function in phase space theory of quantum optics. We prove that, up to a Gaussian function, the entangled Husimi distribution function of a two-mode quantum state |ψ〉 is just the modulus square of the complex wavelet transform of \(e^{-\vert \eta \vert ^{2}/2}\) with ψ(η) being the mother wavelet.

Keywords

Complex wavelet transformation Entangled Husimi distribution IWOP technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wigner, E.: Phys. Rev. 40, 749 (1932) MATHCrossRefADSGoogle Scholar
  2. 2.
    Hillery, M., O’Connell, R.F., Scully, M.O., Wigner, E.P.: Phys. Rep. 106, 121 (1984) CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Schleich, W.P.: Quantum Optics in Phase Space. Wiley-VCH, Berlin (2001) MATHCrossRefGoogle Scholar
  4. 4.
    Bužek, V., Knight, P.L.: Prog. Opt. 34, 1 (1995) CrossRefGoogle Scholar
  5. 5.
    Dodonov, V.V., Man’ko, V.I.: Theory of Nonclassical States of Light. Taylor & Francis, New York (2003) Google Scholar
  6. 6.
    Husimi, K.: Proc. Phys. Math. Soc. Jpn. 22, 264 (1940) MATHGoogle Scholar
  7. 7.
    Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992) MATHGoogle Scholar
  8. 8.
    Chui, C.K.: An Introduction to Wavelets. Academic Press, San Diego (1992) MATHGoogle Scholar
  9. 9.
    Pinsky, M.A.: Introduction to Fourier Analysis and Wavelets. Book/Cole, San Diego (2002) MATHGoogle Scholar
  10. 10.
    Goodman, J.W.: Introduction to Fourier Optics. McGraw-Hill, New York (1968) Google Scholar
  11. 11.
    Hu, L.-Y., Fan, H.-Y.: Int. J. Theor. Phys. 48, 1539 (2009) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fan, H.-Y., Yang, Y.-L.: Phys. Lett. A 353, 439 (2006) MATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Fan, H.-Y., Guo, Q.: Phys. Lett. A 358, 203 (2006) MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Fan, H.-Y., Lu, H.-L.: Opt. Lett. 32, 554 (2007) CrossRefADSGoogle Scholar
  15. 15.
    Fan, H.-Y., Zaidi, H.R., Klauder, J.R.: Phys. Rev. D 35, 1831 (1987) CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Fan, H.-Y., Klauder, J.R.: Phys. Rev. A 49, 704 (1994) CrossRefADSGoogle Scholar
  17. 17.
    Dodonov, V.V.: J. Opt., B Quantum Semiclass. Opt. 4, R1 (2002) CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Loudon, R., Knight, P.L.: J. Mod. Opt. 34, 709 (1987) MATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Walls, D.F.: Nature 324, 210 (1986) CrossRefADSGoogle Scholar
  20. 20.
    Fan, H.-Y.: J. Opt., B Quantum Semiclass. Opt. 5, R147 (2003) CrossRefADSGoogle Scholar
  21. 21.
    Hu, L., Fan, H.: Int. J. Theor. Phys. 47, 1058–1067 (2008). doi: 10.1007/s10773-007-9533-9 MATHCrossRefGoogle Scholar
  22. 22.
    Fan, H.-Y., Lu, H.-L., Fan, Y.: Ann. Phys. 321, 480 (2006) MATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Wünsche, A.: J. Opt., B Quantum Semiclass. Opt. 1, R11 (1999) CrossRefGoogle Scholar
  24. 24.
    Fan, H.-Y., Lu, H.-L.: Int. J. Mod. Phys. B 19, 799 (2005) MATHCrossRefADSGoogle Scholar
  25. 25.
    Mehta, C.L.: Phys. Rev. Lett. 18, 752 (1967) CrossRefADSGoogle Scholar
  26. 26.
    Weyl, H.: Z. Phys. 46, 1 (1927) CrossRefADSGoogle Scholar
  27. 27.
    Hu, L.-Y., Fan, H.-Y.: Phys. Rev. A 80, 022115 (2009) CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    Hu, L.-Y., Fan, H.-Y.: J. Mod. Opt. 55, 1835 (2008) MATHCrossRefADSGoogle Scholar
  29. 29.
    Hu, L.-Y., Fan, H.-Y.: arXiv:0910.5354v1 [quant-ph] (2009)

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.College of Physics and Communication ElectronicsJiangxi Normal UniversityNanchangChina
  2. 2.Department of Material Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations