Advertisement

International Journal of Theoretical Physics

, Volume 49, Issue 4, pp 849–853 | Cite as

On Diósi-Penrose Criterion of Gravity-Induced Quantum Collapse

  • Shan Gao
Article

Abstract

It is shown that the Diósi-Penrose criterion of gravity-induced quantum collapse may be inconsistent with the discreteness of space–time, which is generally considered as an indispensable element in a complete theory of quantum gravity. Moreover, the analysis also suggests that the discreteness of space–time may result in rapider collapse of the superposition of energy eigenstates than required by the Diósi-Penrose criterion.

Keywords

Diósi-Penrose criterion Gravity-induced quantum collapse Discreteness of space–time Quantum gravity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feynman, R.: Feynman Lectures on Gravitation, B. Hatfield (ed.) Addison-Wesley, Reading (1995) Google Scholar
  2. 2.
    Károlyházy, F.: Nuovo Cimento A 42, 390–402 (1966) CrossRefGoogle Scholar
  3. 3.
    Károlyházy, F., Frenkel, A., Lukács, B.: On the possible role of gravity on the reduction of the wavefunction. In: Penrose, R., Isham, C.J. (eds.) Quantum Concepts in Space and Time, pp. 109–128. Clarendon, Oxford (1986) Google Scholar
  4. 4.
    Diósi, L.: Phys. Lett. A 120, 377 (1987) CrossRefADSGoogle Scholar
  5. 5.
    Diósi, L.: Phys. Rev. A 40, 1165 (1989) CrossRefADSGoogle Scholar
  6. 6.
    Diósi, L.: Braz. J. Phys. 35, 260 (2005) CrossRefADSGoogle Scholar
  7. 7.
    Diósi, L.: J. Phys. A, Math. Theor. 40, 2989 (2007) MATHCrossRefADSGoogle Scholar
  8. 8.
    Penrose, R.: Gen. Relativ. Gravit. 28, 581 (1996) MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Penrose, R.: Phil. Trans. R. Soc. Lond. A 356, 1927 (1998) MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Penrose, R.: Wavefunction collapse as a real gravitational effect. In: Fokas, A., et al. (eds.) Mathematical Physics, pp. 266–282. Imperial College, London (2000) Google Scholar
  11. 11.
    Salecker, H., Wigner, E.P.: Phys. Rev. 109, 571 (1958) MATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Garay, L.J.: Int. J. Mod. Phys. A 10, 145 (1995) CrossRefADSGoogle Scholar
  13. 13.
    Adler, R.J., Santiago, D.I.: Mod. Phys. Lett. A 14, 1371 (1999) CrossRefADSGoogle Scholar
  14. 14.
    Smolin, L.: Three Roads to Quantum Gravity. Oxford University Press, Oxford (2000) Google Scholar
  15. 15.
    Percival, I.C.: Proc. R. Soc. A 451, 503 (1995) MATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Percival, I.C.: Quantum State Diffusion. Cambridge University Press, Cambridge (1998) MATHGoogle Scholar
  17. 17.
    Hughston, L.P.: Proc. R. Soc. A 452, 953 (1996) MATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Adler, S.L., Horwitz, L.P.: J. Math. Phys. 41, 2485 (2000) MATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Adler, S.L.: J. Phys. A: Math. Gen. 35, 841–858 (2002) MATHCrossRefADSGoogle Scholar
  20. 20.
    Adler, S.L.: Phys. Rev. D 67, 25007 (2003) CrossRefADSGoogle Scholar
  21. 21.
    Pearle, P.: Phys. Rev. A 69, 42106 (2004) CrossRefADSGoogle Scholar
  22. 22.
    Gao, S.: Int. J. Theor. Phys. 45(10), 1943 (2006) MATHCrossRefGoogle Scholar
  23. 23.
    Yablonovitch, E.: Phys. Rev. Lett. 58, 2059 (1987) CrossRefADSGoogle Scholar
  24. 24.
    Christian, J.: Why the quantum must yield to gravity. In: Callender, C., Huggett, N. (eds.) Physics Meets Philosophy at the Planck Scale, pp. 305. Cambridge University Press, Cambridge (2001) CrossRefGoogle Scholar
  25. 25.
    Anandan, J.S.: Quantum measurement problem and the gravitational field. In: Huggett, S.A., et al. (eds.) The Geometric Universe: Science, Geometry, and the Work of Roger Penrose, pp. 357–368. Oxford University Press, Oxford (1998) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Unit for History and Philosophy of Science and Centre for Time, SOPHIUniversity of SydneyCarltonAustralia

Personalised recommendations