Advertisement

International Journal of Theoretical Physics

, Volume 49, Issue 4, pp 701–708 | Cite as

Is It Possible to Derive Newtonian Equations of Motion with Memory?

  • R. R. Nigmatullin
  • D. Baleanu
Article

Abstract

In this paper for a given example we proved that the Riemann-Liouville fractional integral term appears naturally and relates the external force with acceleration within the fractional Newtonian equation. The consideration of some self-similar process that leads to the fractional integral as well as some possible generalizations of the proposed model was discussed.

Keywords

Fractional calculus Newtonian equation Riemann-Liouville fractional integral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baleanu, D., Golmankhaneh, A.K., Golmankhaneh, A.K.: The dual action of fractional multi time Hamilton equations. Int. J. Theor. Phys. 48(9), 2558 (2009) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Carpinteri, A., Mainardi, F.: Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien (1997) MATHGoogle Scholar
  3. 3.
    Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) MATHGoogle Scholar
  4. 4.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) MATHGoogle Scholar
  5. 5.
    Le Mehaute, A., Nigmatullin, R.R., Nivanen, L.: Fleches du Temps et Geometrie Fractale. Editions. Hermes, Paris (1998) (in French) Google Scholar
  6. 6.
    Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Connecticut (2006) Google Scholar
  7. 7.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Integrals and Derivatives-Theory and Application. Wiley, New York (1993) Google Scholar
  8. 8.
    Nigmatullin, R.R., Le Mehaute, A.: Is there a geometrical/physical meaning of the fractional integral with complex exponent? J. Non-Cryst. Sol. 351, 2888 (2005) CrossRefADSGoogle Scholar
  9. 9.
    Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974) MATHGoogle Scholar
  10. 10.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) MATHGoogle Scholar
  11. 11.
    Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A.: Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007) MATHGoogle Scholar
  12. 12.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives—Theory and Applications. Gordon and Breach, New York (1993) MATHGoogle Scholar
  13. 13.
    Uchaikin, V.V.: The Method of the Fractional Derivatives. Art-i-Shock, Ulianovsk (2008). (In Russian) Google Scholar
  14. 14.
    Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005) MATHGoogle Scholar
  15. 15.
    West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2003) Google Scholar
  16. 16.
    Nigmatullin, R.R.: Dielectric relaxation based on the fractional kinetics: theory and its experimental confirmation. Phys. Scr. 136, 014001 (2009) CrossRefGoogle Scholar
  17. 17.
    Nigmatullin, R.R.: Detection of collective motions in dielectric spectra and the meaning of the generalized Vogel-Fulcher-Tamman equation. Phys. B: Condens. Matter 404, 255–269 (2009) CrossRefADSGoogle Scholar
  18. 18.
    Nigmatullin, R.R., Arbuzov, A.A., Salehli, F., Gis, A., Bayrak, I., Catalgil-Giz, H.: The first experimental confirmation of the fractional kinetics containing the complex power-law exponents: dielectric measurements of polymerization reaction. Phys. B: Phys. Condens. Matter 388, 418–434 (2007) CrossRefADSGoogle Scholar
  19. 19.
    Baleanu, D., Golmankhaneh, A.K., Golmankhaneh, A.K., Nigmatullin, R.R.: Newtonian law with memory. Nonlinear Dyn. doi: 10.1007/s11071-009-9581-1. In press
  20. 20.
    Ren, F.-Y., Yu, Z.-G., Su, F.: Fractional integral associated to the self-similar set or the generalized self-similar set and its physical interpretation. Phys. Lett. A 219, 59 (1996) MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Theoretical Physics DepartmentKazan State UniversityKazanRussian Federation
  2. 2.Department of Mathematics and Computer ScienceCankaya UniversityAnkaraTurkey
  3. 3.Institute of Space SciencesMagurele-BucharestRomania

Personalised recommendations