Advertisement

International Journal of Theoretical Physics

, Volume 48, Issue 7, pp 2177–2189 | Cite as

Symmetries of the Relativistic Two-Boson System in External Field

  • Philippe Droz-Vincent
Article

Abstract

We investigate the survival of symmetries in a relativistic system of two mutually interacting bosons coupled with an external field, when this field is “strongly” translation invariant in some directions and additionally remains unchanged by other isometries of spacetime. Since the relativistic interactions cannot be composed additively, it is not a priori garanteed that the two-body system inherits all the symmetries of the external potential. However, using an ansatz which permits to preserve the compatibility of the mass-shell constraints in the presence of the field, we show how the “surviving isometries” can actually be implemented in the two-body wave equations.

Keywords

Relativistic quantum mechanics Relativistic wave equations Mass-shell constraints 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Droz-Vincent, Ph.: Isometric invariance of the positive-frequency kernel in generalized FRW spacetimes. In: Martin, J., Ruiz, E., Atrio, F., Molina, A. (eds.) Relativity and Gravitation in General. Proceedings of the Spanish Relativity meeting, 1998. World Scientific, Singapore (1999) Google Scholar
  2. 2.
    Sokolov, S.N.: Teor. Mat. Fiz. 36, 193 (1978) (English. transl. Theor. Math. Phys. 36, 682 (1979)) Google Scholar
  3. 3.
    Todorov, I.T.: JINR Report E2-10125, Dubna (1976) Google Scholar
  4. 4.
    Molotkov, V.V., Todorov, I.T.: Commun. Math. Phys. 79, 111–132 (1981) CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Llosa, J. (ed.): Relativistic Action-at-a-Distance, Classical and Quantum Aspects. Lecture Notes in Phys., vol. 162. Springer, Berlin (1982) Google Scholar
  6. 6.
    Longhi, G., Lusanna, L. (eds.): Constraints Theory and Relativistic Dynamics. World Publishing, Singapore (1987) Google Scholar
  7. 7.
    Droz-Vincent, Ph.: Rep. Math. Phys. 8, 79 (1975) CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Droz-Vincent, Ph.: Phys. Rev. D 19, 702 (1979) CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Bel, L.: In: Cahen, M., Flato, M. (eds.) Differential Geometry and Relativity, p. 197. Reidel, Dordrecht (1976) Google Scholar
  10. 10.
    Bel, L.: Phys. Rev. D 28, 1308 (1983) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Leutwyler, H., Stern, J.: Ann. Phys. (NY) 112, 94 (1978) CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Leutwyler, H., Stern, J.: Phys. Lett. B 73, 75 (1978) CrossRefADSGoogle Scholar
  13. 13.
    Crater, H., Van Alstine, P.: Phys. Lett. B 100, 166 (1981) CrossRefADSGoogle Scholar
  14. 14.
    Sazdjian, H.: Phys. Lett. B 156, 381 (1985) CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Sazdjian, H.: J. Math. Phys. 28, 2618 (1987) MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Bijtebier, J., Broekert, J.: Nuovo Cim. A 105, 351 (1992) CrossRefADSGoogle Scholar
  17. 17.
    Bijtebier, J.: Nuovo Cim. A 102, 1235 (1989) CrossRefADSGoogle Scholar
  18. 18.
    Droz-Vincent, Ph.: Nuovo Cim. A 105, 1103–1126 (1992) CrossRefADSGoogle Scholar
  19. 19.
    Avron, J.E., Herbst, I.W., Simon, B.: Ann. Phys. 114, 431 (1978) MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Crater, H., Van Alstine, P.: Phys. Rev. D 36, 3007 (1987) CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Sazdjian, H., Jallouli, H.: Ann. Phys. (NY) 253, 376–426 (1997) MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Droz-Vincent, Ph.: Phys. Rev. A 52, 1837–1844 (1995) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Observatoire de ParisCNRS, Université Paris DiderotMeudonFrance

Personalised recommendations