Advertisement

International Journal of Theoretical Physics

, Volume 49, Issue 3, pp 536–541 | Cite as

Geometric Phase in the Interaction System of Two-Energy Atom with Double-Mode Radiation Field

  • Fu-Ping Liu
  • An-Ling Wang
  • Zhao-Xian Yu
Article
  • 42 Downloads

Abstract

By using the Lewis–Riesenfeld invariant theory, the dynamical and the geometric phases in the interaction system of two-energy atom with double-mode radiation field are given, respectively. The Aharonov-Anandan phase is also obtained under the cyclical evolution.

Geometric phase Two-energy atom Double-mode radiation field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pancharatnam, S.: Proc. Indian Acad. Sci., Sect. A 44, 247 (1956) MathSciNetGoogle Scholar
  2. 2.
    Berry, M.V.: Proc. R. Soc. London, Ser. A 392, 45 (1984) MATHCrossRefADSGoogle Scholar
  3. 3.
    Aharonov, Y., Anandan, J.: Phys. Rev. Lett. 58, 1593 (1987) CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Samuel, J., Bhandari, R.: Phys. Rev. Lett. 60, 2339 (1988) CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Mukunda, N., Simon, R.: Ann. Phys. (N.Y.) 228, 205 (1993) MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Pati, A.K.: Phys. Rev. A 52, 2576 (1995) CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Uhlmann, A.: Rep. Math. Phys. 24, 229 (1986) MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Sjöqvist, E.: Phys. Rev. Lett. 85, 2845 (2000) CrossRefADSGoogle Scholar
  9. 9.
    Tong, D.M., et al.: Phys. Rev. Lett. 93, 080405 (2004) CrossRefADSGoogle Scholar
  10. 10.
    Lewis, H.R., Riesenfeld, W.B.: J. Math. Phys. 10, 1458 (1969) CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Gao, X.C., Xu, J.B., Qian, T.Z.: Phys. Rev. A 44, 7016 (1991) CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Gao, X.C., Fu, J., Shen, J.Q.: Eur. Phys. J. C 13, 527 (2000) CrossRefADSGoogle Scholar
  13. 13.
    Gao, X.C., Gao, J., Qian, T.Z., Xu, J.B.: Phys. Rev. D 53, 4374 (1996) MathSciNetADSGoogle Scholar
  14. 14.
    Shen, J.Q., Zhu, H.Y.: arXiv:quant-ph/0305057v2 (2003)
  15. 15.
    Richardson, D.J., et al.: Phys. Rev. Lett. 61, 2030 (1988) CrossRefADSGoogle Scholar
  16. 16.
    Wilczek, F., Zee, A.: Phys. Rev. Lett. 25, 2111 (1984) CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Moody, J., et al.: Phys. Rev. Lett. 56, 893 (1986) CrossRefADSGoogle Scholar
  18. 18.
    Sun, C.P.: Phys. Rev. D 41, 1349 (1990) CrossRefADSGoogle Scholar
  19. 19.
    Sun, C.P.: Phys. Rev. A 48, 393 (1993) CrossRefGoogle Scholar
  20. 20.
    Sun, C.P.: Phys. Rev. D 38, 298 (1988) CrossRefGoogle Scholar
  21. 21.
    Sun, C.P., et al.: J. Phys. A 21, 1595 (1988) MATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Sun, C.P., et al.: Phys. Rev. A 63, 012111 (2001) CrossRefADSGoogle Scholar
  23. 23.
    Chen, G., Li, J.Q., Liang, J.Q.: Phys. Rev. A 74, 054101 (2006) CrossRefADSGoogle Scholar
  24. 24.
    Chen, Z.D., Liang, J.Q., Shen, S.Q., Xie, W.F.: Phys. Rev. A 69, 023611 (2004) CrossRefADSGoogle Scholar
  25. 25.
    He, P.B., Sun, Q., Li, P., Shen, S.Q., Liu, W.M.: Phys. Rev. A 76, 043618 (2007) CrossRefADSGoogle Scholar
  26. 26.
    Li, Z.D., Li, Q.Y., Li, L., Liu, W.M.: Phys. Rev. E 76, 026605 (2007) ADSGoogle Scholar
  27. 27.
    Niu, Q., Wang, X.D., Kleinman, L., Liu, W.M., Nicholson, D.M.C., Stocks, G.M.: Phys. Rev. Lett. 83, 207 (1999) CrossRefADSGoogle Scholar
  28. 28.
    Wei, J., Norman, E.: J. Math. Phys. 4, 575 (1963) MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PhysicsBeijing Institute of Graphic CommunicationBeijingChina
  2. 2.Department of PhysicsBeijing Information Science and Technology UniversityBeijingChina

Personalised recommendations