International Journal of Theoretical Physics

, Volume 49, Issue 2, pp 293–303 | Cite as

Fractional Dynamics of Relativistic Particle



Fractional dynamics of relativistic particle is discussed. Derivatives of fractional orders with respect to proper time describe long-term memory effects that correspond to intrinsic dissipative processes. Relativistic particle subjected to a non-potential four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ +c 2=0, where c is a speed of light in vacuum. In the general case, the fractional dynamics of relativistic particle is described as non-Hamiltonian and dissipative. Conditions for fractional relativistic particle to be a Hamiltonian system are considered.

Fractional derivative Fractional dynamics Relativistic dynamics Relativistic particle Nonholonomic constraints Dissipation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993) MATHGoogle Scholar
  2. 2.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam (2006) Google Scholar
  3. 3.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) MATHGoogle Scholar
  4. 4.
    Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005) MATHGoogle Scholar
  5. 5.
    Carpinteri, A., Mainardi, F. (eds.): Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien (1997) MATHGoogle Scholar
  6. 6.
    Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A. (eds.): Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007) MATHGoogle Scholar
  7. 7.
    Krupkova, O., Musilova, J.: The relativistic particle as a mechanical system with non-holonomic constraints. J. Phys. A 34(18), 3859–3875 (2001) MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Krupkova, O., Musilova, J.: The relativistic mechanics in a nonholonomic setting: a unified approach to particles with non-zero mass and massless particles. arXiv:0904.2933
  9. 9.
    Gracia, X., Martin, R.: Regularity and symmetries of nonholonomic systems. J. Phys. A 38(5), 1071–1087 (2005) (Sect. 6, pp. 1081–1083). math-ph/0405066 MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Sudarshan, E.C.G.: Higher spin fields and non-holonomic constraints. Found. Phys. 33(5), 707–717 (2003) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Nakagoshi, H., Namiki, M., Ohba, I., Okano, K.: Gauge fixing condition as non-holonomic constraint in stochastic quantization of non-abelian gauge fields. Prog. Theor. Phys. 70(1), 326–329 (1983) CrossRefADSGoogle Scholar
  12. 12.
    Krupkova, O., Voln, P.: Euler-Lagrange and Hamilton equations for non-holonomic systems in field theory. J. Phys. A 38, 8715–8745 (2005) MATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Gonzalez, G.: Hamiltonian for a relativistic particle with linear dissipation. Int. J. Theor. Phys. 46(3), 486–491 (2007) MATHCrossRefGoogle Scholar
  14. 14.
    Gonzalez, G.: Relativistic motion with linear dissipation. Int. J. Theor. Phys. 46(3), 417–423 (2007). quant-ph/0503211 MATHCrossRefGoogle Scholar
  15. 15.
    Tarasov, V.E.: Quantum Mechanics of Non-Hamiltonian and Dissipative Systems. Elsevier, Amsterdam (2008) Google Scholar
  16. 16.
    Pauli, W.: Theory of Relativity. Pergamon, Elmsford (1958) or Dover (1981) MATHGoogle Scholar
  17. 17.
    Ugarov, V.A.: Special Theory of Relativity. MIR, Moscow (1979); and 2nd edn., Nauka, Moscow (1997), pp. 141–142 (in Russian) Google Scholar
  18. 18.
    Tarasov, V.E.: Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 323(11), 2756–2778 (2008) MATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Chetaev, N.G.: About Gauss principle. Proc. Phys. Math. Soc. Kazan’ Univ. 6(3), 68–71 (1932–1933) Google Scholar
  20. 20.
    Chetaev, N.G.: Stability of Motion. Works on Analytic Mechanics. Acad. Sci. USSR, Moscow (1962), pp. 323–326. Google Scholar
  21. 21.
    Helmholtz, H.: Uber die physikalische Bedeutung des Prinzips der kleinsten Wirkung. J. Reine Angew. Math. 101, 137–166 (1887) Google Scholar
  22. 22.
    Tarasov, V.E.: Fractional generalization of gradient and Hamiltonian systems. J. Phys. A 38(26), 5929–5943 (2005) MATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Rumiantsev, V.V.: On Hamilton’s principle for nonholonomic systems. J. Appl. Math. Mech. 42(3), 407–419 (1978) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Rumyantsev, V.V.: Hamilton’s principle for nonholonomic systems. Prikl. Mat. Meh. 42(3), 387–399 (1978) (in Russian) MathSciNetGoogle Scholar
  25. 25.
    Rumyantsev, V.V.: Forms of Hamilton’s principle for nonholonomic systems. Facta Univ., Mech. Autom. Control Robot. 2(19), 1035–1048 (2000). MATHGoogle Scholar
  26. 26.
    Sedov, L.I.: Models of continuous media with internal degrees of freedom. J. Appl. Math. Mech. 32(5), 803–819 (1968). Prikl. Mat. Meh. 32(5), 771–785 (1968) (in Russian) MATHCrossRefGoogle Scholar
  27. 27.
    Sedov, L.I.: Mathematical methods for constructing new models of continuous media. Russ. Math. Surv. 20(5), 123–182 (1965) CrossRefMathSciNetGoogle Scholar
  28. 28.
    Sedov, L.I., Tsypkin, A.G.: Principles of the Microscopic Theory of Gravitation and Electromagnetism. Nauka, Moscow (1989), Sects. 3.7, 3.8–3.12 and 4 (in Russian) Google Scholar
  29. 29.
    Rumiantsev, V.V.: On integral principles for nonholonomic systems. J. Appl. Math. Mech. 46(1), 1–8 (1982) CrossRefMathSciNetGoogle Scholar
  30. 30.
    Cronström, C., Raita, T.: On nonholonomic systems and variational principles. J. Math. Phys. 50(4), 042901 (2009). arXiv:0810.3611 CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Tarasov, V.E.: Fractional variations for dynamical systems: Hamilton and Lagrange approaches. J. Phys. A 39(26), 8409–8425 (2006) MATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Chernyi, L.T.: Relativistic Models of Continuous Media. Nauka, Moscow (1983) (in Russian) Google Scholar
  33. 33.
    Tarasov, V.E., Zaslavsky, G.M.: Nonholonomic constraints with fractional derivatives. J. Phys. A 39(31), 9797–9815 (2006). math-ph/0603067 MATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272(1), 368–379 (2002) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Agrawal, O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A. 40(24), 6287–6303 (2007) MATHCrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996) CrossRefMathSciNetADSGoogle Scholar
  37. 37.
    Klimek, M.: Lagrangean and Hamiltonian fractional sequential mechanics. Czechoslov. J. Phys. 52(11), 1247–1253 (2002) MATHCrossRefMathSciNetADSGoogle Scholar
  38. 38.
    Muslih, S.I., Baleanu, D.: Formulation of Hamiltonian equations for fractional variational problems. Czechoslov. J. Phys. 55(6), 633–642 (2005) CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    Rabei, E.M., Nawafleh, K.I., Hijjawi, R.S., Muslih, S.I., Baleanu, D.: The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327(2), 891–897 (2007) MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Herzallah, M.A.E., Baleanu, D.: Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations. Nonlin. Dyn. 58(1–2), 385–391 (2009) CrossRefGoogle Scholar
  41. 41.
    Kompaneets, R., Vladimirov, S.V., Ivlev, A.V., Tsytovich, V., Morfill, G.: Dust clusters with non-Hamiltonian particle dynamics. Phys. Plasmas 13(7), 072104 (2006) CrossRefMathSciNetADSGoogle Scholar
  42. 42.
    Stokes, J.D.E., Vladimirov, S.V., Samarian, A.A.: Reformulation of Hamiltonian dynamics for dust particle interactions in complex plasma. In: 34th EPS Conference on Plasma Physics, Warsaw, 2–6 July 2007. ECA, vol. 31F, O-2.018 (2007).
  43. 43.
    Zhdanov, S.K., Ivlev, A.V., Morfill, G.E.: Non-Hamiltonian dynamics of grains with spatially varying charges. Phys. Plasmas 12(2), 072312 (2005) CrossRefMathSciNetADSGoogle Scholar
  44. 44.
    Baleanu, D., Golmankhaneh, A.K.: The dual action of fractional multi-time Hamilton equations. Int. J. Theoret. Phys. 48(9), 2558–2569 (2009) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations