Advertisement

International Journal of Theoretical Physics

, Volume 48, Issue 11, pp 3268–3277 | Cite as

Two-variable Hermite Polynomial State and Its Wigner Function

  • Xiang-Guo Meng
  • Ji-Suo Wang
  • Bao-Long Liang
Article
  • 143 Downloads

Abstract

In this paper we obtain the Wigner functions of two-variable Hermite polynomial states (THPS) and their marginal distribution using the entangled state |ξ〉 representation. Also we obtain tomogram of THPS by virtue of the Radon transformation between the Wigner operator and the projection operator of another entangled state |η,τ 1,τ 2〉.

Keywords

Two-variable Hermite polynomial state Entangled state representation Wigner function Tomogram function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dodonov, V.V., Man’ko, V.I.: Theory of Nonclassical States of Light. Taylor & Francis, London (2003) Google Scholar
  2. 2.
    Wigner, E.: Phys. Rev. 40, 749 (1932) MATHCrossRefADSGoogle Scholar
  3. 3.
    Agawal, G.S., Wolf, E.: Phys. Rev. D 2, 2161 (1972) CrossRefADSGoogle Scholar
  4. 4.
    Bergou, J.A., Hillery, M., Yu, D.Q.: Phys. Rev. A 43, 515 (1991) CrossRefADSGoogle Scholar
  5. 5.
    Wang, Z.X., Guo, D.R.: General Theory of Special Functions. Science Publishing, Beijingin (1965) (in Chinese) Google Scholar
  6. 6.
    Fan, H.Y., Ye, X.: Phys. Lett. A 175, 387 (1993) CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Fan, H.Y., Yu, G.C.: Mod. Phys. Lett. A 15, 499 (2000) CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Fan, H.Y., Ye, X.: Phys. Lett. A 51, 3343 (1995) MathSciNetGoogle Scholar
  9. 9.
    Fan, H.Y., Zaidi, H.R., Klauder, J.R.: Phys. Rev. D 35, 1831 (1987) CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Fan, H.Y.: Entangled State Representations in Quantum Mechanics and Their Applications. Shanghai Jiao Tong University Press, Shanghai (2001) (in Chinese) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhysicsLiaocheng UniversityLiaochengP.R. China

Personalised recommendations