International Journal of Theoretical Physics

, Volume 49, Issue 12, pp 3022–3029 | Cite as

Interpreting Quantum Parallelism by Sequents



We introduce an interpretation of quantum superposition in predicative sequent calculus, in the framework of basic logic. Then we introduce a new predicative connective for the entanglement. Our aim is to represent quantum parallelism in terms of logical proofs.


Quantum computational logics Basic logic Sequent calculus Paraconsistent logics Entanglement Quantum computational speed up Random variables First order variables Holistic interpretation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Battilotti, G.: A paraconsistent and predicative logical calculus in the framework of quantum computation. Logical considerations on efficient computational strategies, related to semantical aspects. Ph.D. Thesis, University of Florence (2009) Google Scholar
  2. 2.
    Battilotti, G.: Logic, computation and quantum theories of mind (Italian) Humana Mente, 5th issue (2008).
  3. 3.
    Battilotti, G., Faggian, C.: Quantum logic and the cube of logics. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, new edition, vol. 6. Kluwer Academic, Dordrecht (2002). Chap. “Quantum Logic” (M.L. Dalla Chiara, R. Giuntini) Google Scholar
  4. 4.
    Dalla Chiara, M.L., Giuntini, R., Leporini, R.: Quantum computational logics. A survey. In: Hendricks, V.F., Malinowski, J. (eds.) Trends in Logic: 50 Years of Studia Logica, pp. 213–255. Kluwer Academic, Dordrecht (2003) Google Scholar
  5. 5.
    Dalla Chiara, M.L., Giuntini, R., Leporini, R.: Compositional and holistic quantum computational semantics. Nat. Comput. (2006) Google Scholar
  6. 6.
    Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Maietti, M.E., Sambin, G.: Toward a minimalist foundation for constructive mathematics. In: Crosilla, L., Schuster, P. (eds.) From Sets and Types to Topology and Analysis: Towards Practicable Foundations for Constructive Mathematics. Oxford Logic Guides, vol. 48, pp. 91–114. Oxford University Press, London (2005) Google Scholar
  9. 9.
    Sambin, G., Battilotti, G., Faggian, C.: Basic logic: reflection, symmetry, visibility. J. Symb. Log. 65, 979–1013 (2000) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of FlorenceFlorenceItaly

Personalised recommendations