Advertisement

International Journal of Theoretical Physics

, Volume 48, Issue 11, pp 3044–3048 | Cite as

A Higher Dimensional Cosmological Model in a Scale-Covariant Theory of Gravitation

  • D. R. K. Reddy
Article

Abstract

Kaluza-Klein space-time is considered in the presence of a perfect fluid distribution in the scale-covariant theory of gravitation by Canuto et al. (Phys. Rev. Lett. 39:429, 1977). With the help of special law of variation for Hubble’s parameter proposed by Bermann (Nuovo Cimento 74B:182, 1983), a cosmological model in five dimensions with a negative constant deceleration parameter is presented in this theory. Some physical and kinematical properties of the model are also discussed.

Keywords

Higher dimensional model Deceleration parameter Scale-covariant theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Witten, E.: Phys. Lett. B 144, 351 (1984) CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Appelquist, T., Chodos, A., Freund, P.G.O.: Modern Kaluza-Klein Theories. Addison-Wesley, Reading (1987) MATHGoogle Scholar
  3. 3.
    Chodos, A., Detweller, S.: Phys. Rev. D 21, 2167 (1980) CrossRefADSGoogle Scholar
  4. 4.
    Marciano, W.J.: Phys. Rev. Lett. 52, 498 (1984) CrossRefADSGoogle Scholar
  5. 5.
    Brans, C.H., Dicke, R.H.: Phys. Rev. 24, 925 (1961) CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Nordtvedt, K. Jr.: Astrophys. J. 161, 1069 (1970) CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Sen, D.K.: Z. Phys. 149, 311 (1957) MATHCrossRefADSGoogle Scholar
  8. 8.
    Sen, D.K., Dunn, K.A.: J. Math. Phys. 12, 578 (1971) MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Saez, D., Ballester, V.J.: Phys. Lett. A 113, 467 (1986) CrossRefADSGoogle Scholar
  10. 10.
    Canuto, V.M., Hsieh, S.H., Adams, P.J.: Phys. Rev. Lett. 39, 429 (1977) CrossRefADSGoogle Scholar
  11. 11.
    Wesson, P.S.: Gravity, Particles and Astrophysics. Reidel, Dordrecht (1980) Google Scholar
  12. 12.
    Will, C.M.: Phys. Rep. 113, 345 (1984) CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Canuto, V.M., Goldman, I.: Nature 304, 311 (1983) CrossRefADSGoogle Scholar
  14. 14.
    Canuto, V.M., Goldman, I.: In: Abell, G.O., Chincarini, G. (eds.) Early Evolution of the Universe and Its Present Structure, p. 485. Reidel, Dordrecht (1983) Google Scholar
  15. 15.
    Reddy, D.R.K., Naidu, R., Rao, L, Devi, K.N.: Astrophys. Space Sci. 310, 177 (2007) MATHCrossRefADSGoogle Scholar
  16. 16.
    Reddy, D.R.K., Rao, P.G., Naidu, R.L.: Int. J. Theor. Phys. (2009) Google Scholar
  17. 17.
    Reddy, D.R.K., Rao, P.G., Naidu, R.L.: Int. J. Theor. Phys. (2009) Google Scholar
  18. 18.
    Reddy, D.R.K., Naidu, R.L.: Astrophys. Space Sci. 307, 395 (2007) CrossRefADSGoogle Scholar
  19. 19.
    Reddy, D.R.K., Naidu, R.L.: Int. J. Theor. Phys. 47, 2339 (2008) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Bermann, M.S.: Nuovo Cimento B 74, 182 (1983) CrossRefADSGoogle Scholar
  21. 21.
    Bermann, M.S., Gomide, F.M.: Gen. Relativ. Gravit. 20, 191 (1988) CrossRefADSGoogle Scholar
  22. 22.
    Maharaj, S.D., Naidoo, R.: Astrophys. Space Sci. 208, 261 (1993) MATHCrossRefADSGoogle Scholar
  23. 23.
    Beesham, A.: Phys. Rev. D 48, 3539 (1993) CrossRefADSGoogle Scholar
  24. 24.
    Johri, V.B., Desikan, K.: Pramana J. Phys. 42, 473 (1994) CrossRefADSGoogle Scholar
  25. 25.
    Singh, G.P., Desikan, K.: Pramana J. Phys. 49, 205 (1997) CrossRefADSGoogle Scholar
  26. 26.
    Reddy, D.R.K., Rao, M.V.S., Rao, G.K.: Astrophys. Space Sci. 306, 171 (2006) CrossRefADSGoogle Scholar
  27. 27.
    Reddy, D.R.K., Rao, M.V.S.: Astrophys. Space Sci. 307, 365 (2007) CrossRefADSGoogle Scholar
  28. 28.
    Reddy, D.R.K., Rao, A.S., Devi, K.N., Naidu, R.L.: J. Dyn. Syst. Geom. Theories 5, 79 (2007) MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Science and HumanitiesM.V.G.R. College of EngineeringVizianagaramIndia

Personalised recommendations