International Journal of Theoretical Physics

, Volume 48, Issue 10, pp 2843–2848 | Cite as

Nonadiabatic Geometric Quantum Computation by Straightway Varying Parameters of Magnetic: A New Design

  • Y. H. Ji


The approach to implement nonadiabatic geometric quantum computation by controlling the magnetic fields is applied to construct single-qubit noncommutable geometric quantum gates. The results show that it is helpful for experimenters to realize the geometric quantum gates by adjusting the external parameters.


Nonadiabatic evolution Geometric qubit Quantum computation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A 264, 94 (1999) MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Jones, J.A., Vedral, V., Ekert, A., Castagnoli, G.: Geometric quantum computation using nuclear magnetic resonance. Nature (London) 403, 869 (2000) CrossRefADSGoogle Scholar
  3. 3.
    Duan, L.M., Cirac, J.I., Zoller, P.: Geometric manipulation of trapped ions for quantum computation. Science 292, 1695 (2001) CrossRefADSGoogle Scholar
  4. 4.
    Falci, G., Fazio, R., Palma, G.M., Siewert, J., Vedral, V.: Detection of geometrical phases in superconducting nanocircuits. Nature (London) 407, 355 (2000) CrossRefADSGoogle Scholar
  5. 5.
    Wang, Z.S., Kwek, L.C., Lai, C.H., Oh, C.H.: Geometric phase and entanglement from massive spin-1 particles. Eur. Phys. J. D 33, 285 (2005) CrossRefADSGoogle Scholar
  6. 6.
    Wang, Z.S., Kwek, L.C., Lai, C.H., Oh, C.H.: Geometric phase in open two-level system. Europhys. Lett. 74, 958 (2006) CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Wang, Z.S., Wu, Ch., Feng, X.-L., Kwek, L.C., Lai, C.H., Oh, C.H.: Effects of a squeezed-vacuum reservoir on geometric phase. Phys. Rev. A 75, 024102 (2007) CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Wang, Z.S., Kwek, L.C., Lai, C.H., Oh, C.H.: Quantum tunneling via quantum geometric phase. Phys. Lett. A 359, 608 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Wang, Z.S., Wu, Ch., Feng, X.-L., Kwek, L.C., Lai, C.H., Oh, C.H., Vedral, V.: Geometric phase induced by quantum nonlocality. Phys. Lett. A 372, 775 (2008) CrossRefADSGoogle Scholar
  10. 10.
    Pachos, J., Zanardi, P., Rasetti, M.: Non-Abelian Berry connections for quantum computation. Phys. Rev. A 61, 010305 (2000) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Wang, Z.S.: Geometric quantum computation and dynamical invariant operators. Phys. Rev. A 79, 024304 (2009) CrossRefADSGoogle Scholar
  12. 12.
    Wang, Z.S., Liou, G.Q., Ji, Y.H.: Noncyclic geometric quantum computation in a nuclear-magnetic-resonance system. Phys. Rev. A 79, 054301 (2009) CrossRefADSGoogle Scholar
  13. 13.
    Leibfried, D., DeMarco, B., Meyer, V., Lucas, D., Barrett, M., Britton, J., Itano, W.M., Jelenkovic, B., Langer, C., Rosenband, T., Wineland, D.J.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412 (2003) CrossRefADSGoogle Scholar
  14. 14.
    Zhu, S.L., Wang, Z.D.: Unconventional geometric quantum computation. Phys. Rev. Lett. 91, 187902 (2003) CrossRefADSGoogle Scholar
  15. 15.
    Zheng, S.B.: Unconventional geometric quantum phase gates with a cavity QED system. Phys. Rev. A 70, 052320 (2004) CrossRefADSGoogle Scholar
  16. 16.
    Chen, C.Y., Feng, M., Zhang, X.L., Gao, K.L.: Strong-driving-assisted unconventional geometric logic gate in cavity QED. Phys. Rev. A 73, 032344 (2006) CrossRefADSGoogle Scholar
  17. 17.
    Wang, Z.S., Wu, Ch., Feng, X.-L., Kwek, L.C., Lai, C.H., Oh, C.H., Vedrel, V.: Nonadiabatic geometric quantum computation. Phys. Rev. A 76, 044303 (2007) CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Zhu, S.L., Wang, Z.D.: Implementation of universal quantum gates based on nonadiabatic geometric phases. Phys. Rev. Lett. 89, 097902 (2002) CrossRefADSGoogle Scholar
  19. 19.
    Zhang, X.D., Zhu, S.L., Hu, L., Wang, Z.D.: Nonadiabatic geometric quantum computation using a single-loop scenario. Phys. Rev. A 71, 014302 (2005) CrossRefADSGoogle Scholar
  20. 20.
    Du, J.F., Zou, P., Wang, Z.D.: Experimental implementation of high-fidelity unconventional geometric quantum gates using an NMR interferometer. Phys. Rev. A 74, 020302 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.College of Physics and Communication ElectronicsJiangxi Normal UniversityNanchangP.R. China
  2. 2.Key Laboratory of Optoelectronic & Telecommunication of JiangxiNanchangP.R. China

Personalised recommendations