International Journal of Theoretical Physics

, Volume 48, Issue 8, pp 2256–2261 | Cite as

Neutrino Oscillation in the Space-Time with a Global Monopole

  • Jun Ren
  • Meng-Wen Jia


The mass neutrino interference phase in a global monopole space time along the null trajectory and the geodesic is studied, and we find that the conserved energy changes a factor when a particle travels along the geodesic, if compared with the energy in the space time without the global monopole. The oscillation phase is increased by a factor due to the correction of the global monopole, comparing with the case in Schwarzschild space time. We obtain that the type-I phase along both the null and geodesic has a difference of a factor of 1−8π η 2, and that the phase along the geodesic is the double of that along the null.


Gravitational field General relativity Neutrino interference phase Global monopole space-time Geodesic line 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fukuda, Y., : Constraints on neutrino oscillation parameters from the measurement of day-night solar neutrino fluxes at super-kamiokande. Phys. Rev. Lett. 82, 1810 (1999) CrossRefADSGoogle Scholar
  2. 2.
    Wolfenstein, L.: Neutrino oscillations in matter. Phys. Rev. D 17, 2369 (1978) CrossRefADSGoogle Scholar
  3. 3.
    Mikheyev, S.P., Smirnov, A.Y.: Resonant amplification of oscillations in matter and solar-neutrino spectroscopy. Il Nuovo Cimento C 9, 17 (1986) CrossRefADSGoogle Scholar
  4. 4.
    Fornengo, N., Giunti, C., Kim, C.W., Song, J.: Gravitational effects on the neutrino oscillation. Phys. Rev. D 56, 1895 (1997) CrossRefADSGoogle Scholar
  5. 5.
    Cardall, C., Fuller, G.: Neutrino oscillations in curved spacetime: A heuristic treatment. Phys. Rev. D 55, 7960 (1997) CrossRefADSGoogle Scholar
  6. 6.
    Zhang, C.M., Beesham, A.: The general treatment of the high and low energy particle interference phase in a gravitational field. Gen. Relativ. Gravit. 33, 1011 (2001) MATHCrossRefADSGoogle Scholar
  7. 7.
    Zhang, C.M., Beesham, A.: On the mass neutrino phase along the geodesic line and the null line in curved and flat space-time. Int. J. Mod. Phys. D 12, 727 (2003) CrossRefADSGoogle Scholar
  8. 8.
    Bhattacharya, T., Habib, S., Mottola, E.: Gravitationally induced neutrino oscillation phases in static spacetimes. Phys. Rev. D 59, 067301 (1999) CrossRefADSGoogle Scholar
  9. 9.
    Pereira, J.G., Zhang, C.M.: Some remarks on the neutrino oscillation phase in a gravitational field. Gen. Relativ. Gravit. 32, 1633 (2000). Addendum Gen. Relativ. Gravit. 33, 2297 (2001) MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Huang, X.J., Wang, Y.J.: Interference phase of mass neutrino in Kerr space-time. Commun. Theor. Phys. 40, 742 (2003) Google Scholar
  11. 11.
    Huang, X.J., Wang, Y.J.: Mass neutrino oscillations in Reissner-Nordstrom space-time. Chin. Phys. 13, 1588 (2004) CrossRefADSGoogle Scholar
  12. 12.
    Huang, X.J., Wang, Y.J.: Mass neutrino oscillations in Robertson Walker space time. Chin. Phys. 15, 229 (2006) CrossRefADSGoogle Scholar
  13. 13.
    Capozziello, S., Lambiase, G.: Inertial effects on neutrino oscillations. Eur. Phys. J. C 12, 343 (2000) CrossRefADSGoogle Scholar
  14. 14.
    Gasperini, M.: Testing the principle of equivalence with neutrino oscillations. Phys. Rev. D 38, 2635 (1988) CrossRefADSGoogle Scholar
  15. 15.
    Mureika, J., Mann, R.B.B.: Mass or gravitationally-induced neutrino oscillations? A comparison of 8B neutrino flux spectra in a three-generation framework. Phys. Lett. B 368, 112 (1996) CrossRefADSGoogle Scholar
  16. 16.
    Mureika, J., Mann, R.B.B.: Three-flavor gravitationally induced neutrino oscillations and the solar neutrino problem. Phys. Rev. D 54, 2761 (1996) CrossRefADSGoogle Scholar
  17. 17.
    Alimohammadi, M., Shariati, A.: Neutrino oscillation in a space-time with torsion. Mod. Phys. Lett. A 14, 267 (1999) CrossRefADSGoogle Scholar
  18. 18.
    Capozziello, S., Iovane, G., Lambiase, G., : Fermion helicity flip induced by torsion field. Europhys. Lett. 46, 710 (1999) CrossRefADSGoogle Scholar
  19. 19.
    Capozziello, S., Lambiase, G., Stornaiolo, C.: Geometric classification of the torsion tensor in space-time. Ann. Phys. 10, 713 (2001) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Cuesta, H.J.M., Lambiase, G.: Neutrino mass spectrum from gravitational waves generated by double neutrino spin-flip in supernovae. Astrophys. J. 689, 371 (2008) CrossRefADSGoogle Scholar
  21. 21.
    Akhmedov, E.K., Maltoni, M., Smirnov, A.Y.: Neutrino oscillograms of the Earth: effects of 1-2 mixing and CP-violation. JHEP 0806, 072 (2008) CrossRefADSGoogle Scholar
  22. 22.
    Dadhich, N., Narayan, K., Yajnik, U.A.: Schwarzschild black hole with global monopole charge. Pramana 50, 307 (1998) CrossRefADSGoogle Scholar
  23. 23.
    Ren, J., Zhao, Z., Gao, C.J.: Hawking radiation via tunnelling from black holes with topological defects. Gen. Relativ. Gravit. 38, 387 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Wald, R.W.: General Relativity. University of Chicago Press, Chicago/London (1984) p. 139 MATHGoogle Scholar
  25. 25.
    Pereira, J.G., Vargas, T., Zhang, C.M.: Axial-vector torsion and the teleparallel Kerr spacetime. Class. Quantum Gravity 18, 833 (2001) MATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Zhang, C.M., Beesham, A.: Rotation spin coupling: high speed rotation case. Gen. Relativ. Gravit. 35, 139 (2003) MATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Zhang, C.M.: The calculation of mass neutrino oscillation phase for the static isotropic space-time in the parallelism torsion gravity. Nuovo Cimento B 120, 439 (2005) ADSGoogle Scholar
  28. 28.
    Barriola, M., Vilenkin, A.: Gravitational field of a global monopole. Phys. Rev. Lett. 63, 341 (1989) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of ScienceHebei University of TechnologyTianjinChina

Personalised recommendations